
Time complexity of genetic algorithms on exponentially scaled
problems

Fernando G. Lobo
ADEEC, UCEH

Universidade do Algarve
Campus de Gambelas

8000-062 Faro, Portugal
flobo@ualg.pt

David E. Goldberg
Dept. General Engineering

University of Illinois
Urbana, IL 61801

deg@uiuc.edu

Martin Pelikan
Dept. General Engineering

University of Illinois
Urbana, IL 61801

pelikan@illigal.ge.uiuc.edu

Abstract

This paper gives a theoretical and empirical
analysis of the time complexity of genetic algo-
rithms (GAs) on problems with exponentially
scaled building blocks. It is important to study
GA performance on this type of problems be-
cause one of the difficulties that GAs are gener-
ally faced with is due to the low scaling or low
salience of some building blocks.

The paper is an extension of the model in-
troduced by Thierens, Goldberg, and Pereira
(1998) for the case of building blocks rather
than single genes, and the main result is that
under the assumption of perfect building block
mixing, both population size and time to con-
vergence grow linearly with the problem length,
giving an overall quadratic time complexity in
terms of fitness function evaluations.

With traditional simple GAs, the assumption
of perfect mixing only occurs when the user
has knowledge about the structure of the prob-
lem (which is usually not true). However, the
assumption is well approximated for advanced
GAs that are able to automatically learn gene
linkage.

1 INTRODUCTION

Genetic algorithm performance is usually measured by
the number of fitness function evaluations done during
the course of a run. For fixed population sizes, the usual
case in GA implementations, the number of fitness func-
tion evaluations is given by the product of population
size by the number of generations. As far as scaling is
concerned, it is useful to investigate how the GA behaves
on problems where the building block scaling is extreme.
Two extreme cases are when the building blocks are (1)
uniformly scaled, and (2) exponentially scaled. An anal-
ysis for case 1 has been done both in terms of population

sizing (Goldberg, Deb, & Clark, 1992), (Harik et al.,
1999) and run duration (Mühlenbein & Schlierkamp-
Voosen, 1993). Case 2, exponentially scaled problems, is
the topic of this paper. The study is important because
one of the difficulties that GAs are faced with is due to
the low scaling or low salience of some building blocks.

The paper starts by reviewing the GA dynamics on this
type of problems, and by taking a look at the model
introduced by Thierens, Goldberg, and Pereira (1998)
which investigated GA performance on problems with
exponentially scaled genes. Section 3 extends this model
for the case of building blocks rather than single genes.
The modeling techniques, however, are the same as the
ones used previously by Thierens, Goldberg, and Pereira.

2 BACKGROUND

Users of genetic algorithms oftentimes observe that not
all parts of a problem are solved at the same speed, some
genes are solved during the first few generations but oth-
ers take more time to do so. This phenomena occurs
because not all parts of a problem are equally impor-
tant; some parts may be responsible for a high variance
in the fitness of an individual while others may only af-
fect an individual’s fitness by a little amount. Fitness is
what guides the genetic algorithm’s search, and the GA
focuses its attention on the genes or features that give
the highest contribution to the fitness of the individuals.
Once these genes have substantially converged, the GA
moves on and tries to solve the remaining parts of the
problem. However, the GA may have trouble in solving
the low salient genes due to the effects of random genetic
drift, a topic to be elaborated later on.

2.1 DOMINO CONVERGENCE

An example of a problem with exponentially scaled
building blocks is the binary integer function. In this
problem, the fitness of an individual string is the value
of the string interpreted as a binary integer number.



For example, in a 4-bit problem, string 1101 has fitness
8 + 4 + 0 + 1 = 13. Each 1-bit corresponds to a building
block, and the fitness contribution of each one is a power
of 2 increasing from right to left.

When a GA operates on this problem the more signifi-
cant bits (or genes) converge faster than the less signif-
icant ones. Overall, there is a sequential convergence of
bits that resemble a row of domino stones falling down
one after the other. To see why this is so, consider what
happens when the two individuals, A and B, compete.

A = 11101101
B = 11110110

Individual B wins because the winner is decided on the
first single gene position where the two individuals have a
different allele value when scanning both strings from left
to right. As can be seen from the example, the selection
pressure on the low salient genes is negligible earlier in
the search; those genes will only be substantially affected
by the selection operator once the more salient genes
have almost converged.

Given a large population size, genes converge correctly
one after the other from the most salient to the least
salient. But if the population size is not large enough,
then the GA may have trouble in going all the way down
to the least significant gene. The problem occurs because
even when there is no selection pressure, allele frequen-
cies fluctuate due to chance variation alone, and may be
lost from the population by the time the GA wants to
pay attention to them. This effect is known as random
genetic drift and is the subject of the next section.

2.2 RANDOM GENETIC DRIFT

Consider a one-bit problem. In such problem there are
two type of individuals, call them individual 0 and indi-
vidual 1. In addition, let us also assume that individual
0 and individual 1 have the same fitness. Since there is
no fitness difference between the two type of individu-
als, we would expect that both remain in the population
forever. That does not happen because in each gener-
ation there is an element of chance in the selection of
individuals that are used to form the next generation.

For instance, consider a population of 100 individuals, 50
of type 0 and 50 of type 1. To obtain the next generation,
100 new individuals are drawn, one at a time, from the
population by using random sampling with replacement
(individuals are put back into the old population after
being selected). In the next generation we won’t neces-
sarily get 50 individuals of type 0 and 50 of type 1. Due
to chance variation, we may get 52 of type 0 and 48 of
type 1, or something like that. The resulting population

becomes the starting point for the next generation and
it is obvious what is going to happen after some time;
eventually the population will be filled with individuals
of only one type, either all 0’s or all 1’s. Once the pop-
ulation reaches such a state, only the mutation operator
can reintroduce variation.

This type of process where there is a change in the gene
frequency makeup of the population due to chance vari-
ation alone is called random genetic drift and there are
mathematical models that can be used to study it (more
about that in section 3.1).

2.3 MODEL OF THIERENS, GOLDBERG,
AND PEREIRA (1998)

Domino convergence and genetic drift were recognized
by Thierens, Goldberg, and Pereira as the two main
things that govern the convergence process of the GA
on this type of problems. Based on that observation,
the authors built a mathematical model and analyzed
the convergence behavior of the GA on the binary inte-
ger function. The way they did it was by building two
separate models, one to analyze the domino convergence
and another to analyze genetic drift. The authors de-
rived two convergence times, tconvergence and tdrift, to
characterize each of the effects. Then they equated the
two models and were able to predict at which point in
time the drift effect is likely to dominate the convergence
process. The next section extends this model for the case
of building blocks rather than single genes.

3 FROM GENES TO BUILDING
BLOCKS

This section extends the model introduced by Thierens,
Goldberg, and Pereira for the case of building blocks. In
order to do so, let us start by stating some assumptions
about the type of problem that we are modeling.

We assume that the fitness function is given by the sum
of m non-overlapping subfunctions. Each subfunction is
a function of k decision variables (k genes) correspond-
ing to a building block. As in the case of the binary
integer function, the building blocks are scaled in such a
way that the winner of a pairwise competition is decided
on the first building block position where the two indi-
viduals have a different value when scanning from left to
right. Another assumption is that building block mix-
ing is perfect. This idealized situation occurs when the
user has knowledge about the structure of the problem
(which is usually not true) or when the GA is able to
learn gene linkage automatically.

There is no building block disruption under the assump-
tion of perfect mixing. Thus, a GA operating on a build-
ing block of k genes is roughly equivalent to a GA op-



erating on a single gene. This means that a problem
with large building blocks can be mapped to a problem
with building blocks constituted by single genes, the dif-
ference being that the expected proportion of alleles in
a randomly initialized population is not half ones and
half zeros, but is 1/2k ones and the remaining propor-
tion of zeros. By doing so, the modeling techniques of
Thierens, Goldberg, and Pereira can be easily transfered
for the case of building blocks. That’s precisely what we
do in the remaining sections.

3.1 DRIFT MODEL

Consider a gene with two possible allele values, 1 and 0.
Consider also a population of size N where a fraction p
of the population has allele value 1 and the remaining
fraction has allele value 0. The question that we are
interested in is the following: how many generations on
average does it take for an allele value to be lost from
the population assuming that the gene is under the effect
of random genetic drift alone. This question has been
addressed in the field of population genetics (Kimura &
Ohta, 1969) and also in the context of genetic algorithms
(Goldberg & Segrest, 1987; Asoh & Mühlenbein, 1994).

The method used by Goldberg and Segrest (1987) and
Asoh and Mühlenbein (1994) is a Markov Chain model as
follows. Given a population of size N with two alleles, 1
and 0, the state of the population can be described by the
number of 1 alleles in the population. The possible states
are 0, 1, 2, . . . , N . States 0 and N are the absorbing
states of the Markov Chain because once the population
reaches one of them it cannot get back to another state.
For all the other states, it is possible for the population to
drift from state i to state j in a single generation. That
probability is called the transition probability, and can be
obtained from the binomial distribution. A population
in state i has a frequency of 1 alleles given by p = i/N ,
and a frequency of 0 alleles given by q = 1 − i/N . The
transition probability of going from i copies of allele 1 to
j copies of allele 1 in a single generation is

Pij =
(

N

j

)
pj qN−j

Given a particular starting condition p, it is possible to
solve the Markov Chain to give the expected drift time,
but it is difficult to obtain a closed form expression for
the general case of an arbitrary starting condition.

An alternative solution is to use a continuous approx-
imation to the discrete Markov Chain model (Kimura,
1964) (see also Hartl and Clark (1997) for a more acces-
sible description). The idea is to analyze genetic drift
using a model similar to that of the physical process of
diffusion. This is less intuitive than the Markov Chain

model, but the basic idea is the following. Consider a dis-
tribution of populations, each having an allele frequency
in the range from 0 to 1. The number of populations
whose frequency is between x and x+ ∂x at time t gives
a probability density φ(x, t). Populations may enter this
range of allele frequencies by drifting in from a lower
frequency, which occurs with a probability flux J(x, t),
and populations may leave this range of allele frequen-
cies by drifting out, which occurs with probability flux
J(x+∂x, t). The rate of change is the difference of fluxes,
J(x, t) − J(x + ∂x, t). For small ∂x, this difference can
be written as − ∂

∂xJ(x, t). Therefore, the rate of change
of allele frequency through time is given by

∂

∂t
φ(x, t) = − ∂

∂x
J(x, t) (1)

The probability flux is

J(x, t) = M(x)φ(x, t)− 1
2

∂

∂x
V (x)φ(x, t) (2)

where M(x) is the average change in allele frequency in a
population whose current allele frequency is x, and V (x)
is the variance of change in allele frequency. Substituting
equation 2 into equation 1 gives

∂

∂t
φ(x, t) = − ∂

∂x
[M(x)φ(x, t)] +

1
2

∂2

∂x2
[V (x)φ(x, t)]

(3)

Equation 3 is used widely in physics to model heat
diffusion and is known as the Fokker-Planck equation.
For the case of random genetic drift, M(x) = 0 and
V (x) is the binomial sampling variance which is equal
to x(1− x)/N . Thus, the diffusion equation for random
genetic drift is:

∂

∂t
φ(x, t) =

1
2N

∂2

∂x2
[x(1− x)φ(x, t)] (4)

The diffusion approximation for the random genetic drift
model is a second-order partial differential equation that
gives a distribution φ(x, t), giving the number of pop-
ulations with allele frequency x at time t. The solu-
tion of this equation requires advanced mathematics that
won’t be mentioned here (the interested reader should
see (Kimura, 1964; Crow & Kimura, 1970) for the math-
ematical derivation). One important application of the
diffusion approximation is the determination of the ex-
pected extinction time for an allele. Kimura and Ohta



(1969) showed that in a population of size N , the aver-
age number of generations to lose an allele that starts
with a proportion p is

tdrift (p) =
−2N
1− p

p ln p (5)

The diffusion model for genetic drift was originally de-
rived for diploid individuals. There, a population of N
individuals has 2N alleles, and the binomial variance in
that case is V (x) = x(1−x)/2N . Equations 4 and 5 are
written assuming that V (x) = x(1− x)/N , which is the
correct value for haploid individuals, the usual case in
genetic algorithm implementations.

Equation 5 gives the one-sided drift time of allele ex-
tinction, that is, it doesn’t consider the cases when the
allele gets fixed to the correct value. This one-sided drift
time is the one that matters for the GA analysis because
we don’t want to consider the lucky occasions when a
building block drifts to the correct value. Substituting p
by 1/2k in equation 5 allow us to use the GA terminol-
ogy and say that on a population of size N , the average
number of generations to lose a building block of size k
genes under the effect of random genetic drift alone is

tdrift (k) =
2 k ln 2
2k − 1

N (6)

Equation 6 says that the extinction time for building
blocks under random genetic drift alone grows linearly
with the population size, and the constant factor de-
creases with the building block size. Table 1 shows
the expected extinction time for building block sizes 1
through 5 using equation 6.

Table 1: Expected extinction time for various building
block sizes under the effect of random genetic drift.

Building block size Drift time
1 1.386 N
2 0.924 N
3 0.594 N
4 0.370 N
5 0.224 N

Computer simulations of random genetic drift match the
diffusion model quite well (see figure 1).

3.2 DOMINO MODEL

This section applies the model developed by Thierens,
Goldberg, and Pereira (1998) for building blocks. The

0

200

400

600

800

1000

1200

0 100 200 300 400 500

ge
ne

ra
tio

ns
 to

 lo
se

 b
ui

ld
in

g 
bl

oc
k

population size

k=1
k=2
k=3
k=4
k=5

1.386 N (k=1)
0.924 N (k=2)
0.594 N (k=3)
0.370 N (k=4)
0.224 N (k=5)

Figure 1: Average time to lose a building block. The
solid lines are from the diffusion model of Kimura and
Ohta (1969). The isolated points were obtained by com-
puter simulation.

terminology is the same as the one adopted by the pre-
vious authors. The model assumes that when the most
salient λ building blocks have converged, the remaining
m − λ building blocks are still in their initial random
state. The convergence model is based on the selection
differential S(t), the difference between the mean fitness
of the population at generation t+1 and the population
mean fitness at generation t. The selection intensity I(t)
is the selection differential S(t) scaled by the standard
deviation σ(t) of the population fitness:

I(t) =
S(t)
σ(t)

=
µ(t + 1)− µ(t)

σ(t)

The increase in the population mean fitness from one
generation to the next can be written as a function of λ:

I(t) =
µt+1(λ)− µt(λ)

σt(λ)

Next, we compute the mean and variance of the pop-
ulation fitness when λ building blocks have converged,
but before doing that let’s compute the mean and vari-
ance of a single building block. In order to make the
analysis simple, we consider that a k-bit building block
correspond to a k-bit needle in a haystack (NIAH) func-
tion. In such a function, one solution has fitness fmax

and the remaining 2k−1 solutions have fitness fmin. Let
p = 1/2k, then the mean µ and variance σ2 of a k-bit
NIAH function is

µ = p fmax + (1− p) fmin

σ2 = p (fmax − µ)2 + (1− p) (fmin − µ)2



In the case of our exponentially scaled problem, fmin = 0
and fmax is a power of 2 whose value depends on the
building block’s salience (or importance). The mean and
variance of the ith most salient building block is

µbb(i) = p fmax = p 2m−i

σ2
bb(i) = p (1− p) (fmax)2 = p (1− p) (2m−i)2

We are now ready to calculate the mean and variance
when λ building blocks have converged. Throughout the
text, p = 1/2k denotes the expected proportion of build-
ing blocks in a uniformly random initialized population.
The mean fitness µ(λ) is calculated by assuming that
the first λ building blocks have already converged to the
correct value, and the remaining m − λ building blocks
are still in their initial random proportion.

µ(λ) =
λ∑

i=1

2m−i +
m∑

i=λ+1

p 2m−i

=
m−1∑

j=0

2j −
m−λ−1∑

j=0

2j + p

m−λ−1∑

j=0

2j

= 2m − 1 + (p− 1)(2m−λ − 1)

(7)

For the variance calculation, it is only necessary to con-
sider the non-converged region because the region that
has already converged contributes nothing to the vari-
ance.

σ2(λ) =
m−λ−1∑

j=0

p (1− p) (2j)2

= p (1− p)
m−λ−1∑

j=0

4j

= p (1− p)
4m−λ − 1

4− 1

≈ p (1− p)
4m−λ

3

(8)

Thierens, Goldberg, and Pereira derived convergence
times for both constant and variable selection intensities.
Here, we limit ourselves to the case of constant selection
intensities because they are the ones that yield faster
convergence times. Examples of such selection schemes
are tournament selection, truncation selection, and rank-
based selection. In these schemes the average fitness in-
crease from one generation to the next is equal to the
product of the selection intensity I by the standard de-
viation of the population fitness:

µt+1(λ)− µt(λ) = σt(λ) I

Substituting the values for the mean µ(λ) and standard
deviation σ(λ) obtained in equations 7 and 8, and sim-
plifying gives

2−λt+1 = 2−λt

(
1− I

√
p

3 (1− p)

)

When t = 0, λ0 = 0. Therefore

2−λt =
(

1− I

√
p

3 (1− p)

)t

which is equivalent to

t =
− ln 2

ln
(
1− I

√
p

3 (1−p)

) λt

Substituting p by 1/2k gives convergence time as a func-
tion of the building block size k:

t =
− ln 2

ln
(

1− I 1√
3
√

2k−1

) λt (9)

Equation 9 says that the number of generations t until
convergence is a linear function of the building block’s
salience in the string. For example, for binary tour-
nament selection the selection intensity is I = 1/

√
π,

and the expected number of generations until the en-
tire string converges (λt = m) for the case of building
blocks of size k = 1 is precisely the same equation that
Thierens, Goldberg, and Pereira obtained:

t =
− ln 2

ln
(
1− 1√

3π

) m = 1.76 m

As another example, for building blocks of size k = 3,
the equation becomes

t =
− ln 2

ln
(
1− 1√

21π

) m = 5.28 m

Just like in the original paper of Thierens, Goldberg, and
Pereira, the constant factor obtained with the domino
convergence model shouldn’t be taken too literally be-
cause this kind of modeling is not completely exact. Nev-
ertheless, the functional form is correct (and is confirmed
by experiments in section 3.4) and says that the average
number of generations until convergence grows linearly
with respect to the number of building blocks.



3.3 DOMINO AND DRIFT TOGETHER

By joining the drift model with the domino convergence
model, it is possible to predict where in the string is the
drift stall likely to occur. That’s precisely what we do
next by equating the times for the two models, tdrift ≈
tconvergence:

2 k ln 2
2k − 1

N ≈ − ln 2

ln
(

1− I 1√
3
√

2k−1

) λ∗

Rearranging gives:

λ∗ ≈
−2 k ln

(
1− I 1√

3
√

2k−1

)

2k − 1
N (10)

Equation 10 says that given a population size N , it is
possible to predict the number of building blocks λ∗ that
will be solved correctly by the GA. Likewise, given a
number of building blocks λ∗ that we wish to solve cor-
rectly, it is possible to predict the necessary population
size needed by the GA to do so. Looking only at the
functional form, equation 10 can be written as N = c λ∗,
where c is a constant that depends on the building block
size k and the selection intensity I.

The population size grows linearly with respect to the
number of building blocks λ∗. In section 3.2 we also ob-
served that the average number of generations until con-
vergence under the domino model is also a linear func-
tion of the number of building blocks. The number of
fitness function evaluations taken by the GA is the prod-
uct of the population size by the number of generations,
and both are linear functions of the number of building
blocks. Therefore, the overall time complexity of genetic
algorithms on exponentially scaled problems, under the
assumption of perfect mixing, is quadratic. The next
section presents computer experiments that confirm a
quadratic time complexity.

3.4 COMPUTER EXPERIMENTS

Computer experiments were performed on problems with
200 exponentially scaled building blocks. The experi-
ments were done using binary tournament selection with
replacement, and the building blocks mixed perfectly us-
ing a population-wise crossover operator similar to the
one used in the compact GA (Harik, Lobo, & Goldberg,
1999) or UMDA (Mühlenbein & Paaß, 1996). The ex-
periments were done for building blocks of size 1 and
3. For size-1 building blocks, the population was ini-
tialized with exactly 50% ones and 50% zeros in each

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180 200

ge
ne

ra
tio

ns
 to

 s
ol

ve
 o

r 
lo

se
 B

B

BB number x

N=2048
N=1024

N=512
N=256
N=128
N=64
N=32

Figure 2: Convergence behavior of an exponentially
scaled problem with 200 building blocks of size k = 1
for various population sizes.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200

ge
ne

ra
tio

ns
 to

 s
ol

ve
 o

r 
lo

se
 B

B

BB number x

N=16384
N=8192
N=4096
N=2048
N=1024

N=512
N=256
N=128

N=64
N=32

Figure 3: Convergence behavior of an exponentially
scaled problem with 200 building blocks of size k = 3
for various population sizes.

bit position. 100 independent runs were performed for
population sizes 32, 64, 128, 256, 512, 1024, and 2048.

Figure 2 plots the average number of generations needed
to either solve or lose the building block for various pop-
ulation sizes. Building block number 0 is the most salient
and building block number 199 is the least salient. The
plot is identical to the one obtained by Thierens, Gold-
berg, and Pereira, except that in this case the results
are shown for various population sizes. For very small
population sizes the convergence process is largely domi-
nated by the drift model, while for large population sizes
the convergence is dictated by the domino model. For
population sizes in the middle range, the most salient
building blocks follow the domino model, and after some
point, the drift effect starts to dominate.



Figure 3 is a similar plot for building blocks of size k = 3.
Each building block is a NIAH function. The experi-
ments were conducted in a similar way as the ones for
k = 1, with the difference that in this case, the initial
population had a proportion of 1/8 ones and 7/8 zeros
(1/2k = 1/8, for k = 3).

The experiments were done is this way to reflect an ide-
alized building block mixing behavior. On an actual
GA run, we should expect to observe slight differences
from the results obtained in figures 2 and 3. Notice the
straight lines obtained for the experiments with large
population sizes in both figures 2 and 3. These re-
sults confirm the linear time complexity for run duration.
The constant factor obtained from the theoretical model,
however, is a conservative estimate. The difference be-
tween model and experiment can be explained due to
the assumption that when the most salient λ building
blocks have converged, the others are still in their initial
random state. This is only an approximation of what ac-
tually happens in a GA run. There, when the λth build-
ing block has converged, the (λ+1)th building block has
already converged substantially, and is far from its ini-
tial random state. Therefore, on an actual GA run the
convergence time is faster than the one predicted by the
domino model.

The experiments show a linear time complexity for run
duration. In terms of population sizing, a look at the
experimental data from our GA runs also reveals a linear
growth. For example, in order to correctly solve the first
25 building blocks (in the case of k = 1) in at least 99%
of the runs, the GA needed a population size of 256.
To do the same thing for the first 50 building blocks a
population size of 256 was not enough. Table 2 shows
the population size needed to correctly solve the first 25,
50, 100, and 200 building blocks in at least 99% of the
runs, for the case of size-1 building blocks. Table 3 shows
the same thing for the case of size-3 building blocks.

Table 2: Population size needed to correctly solve the
first 25, 50, 100, and 200 size-1 building blocks in at
least 99 out of 100 runs.

Building blocks Population size
25 256
50 512
100 1024
200 2048

In both cases, when the number of building blocks dou-
bles, the population sizing requirements also doubles. In
summary, both population size and run duration grow
linearly with the number of building blocks, giving an
overall quadratic time complexity in terms of fitness
function evaluations.

Table 3: Population size needed to correctly solve the
first 25, 50, 100, and 200 size-3 building blocks in at
least 99 out of 100 runs.

Building blocks Population size
25 2048
50 4096
100 8192
200 16384

4 SUMMARY

This study extended the model of Thierens, Goldberg,
and Pereira (1998) to analyze the time complexity of ge-
netic algorithms on exponentially scaled problems. An
extended drift and domino convergence model was pre-
sented along with computer simulations. The main re-
sult of this work is that under the assumption of perfect
building block mixing, the overall time complexity of ge-
netic algorithms on problems with exponentially scaled
building blocks is a quadratic function of the number of
building blocks.

5 CONCLUSIONS

For the two extreme cases of building block scaling, uni-
form and exponential, genetic algorithms with perfect
mixing have time complexities of O(m) and O(m2) re-
spectively. The linear time complexity for uniformly
scaled problems occurs because the population sizing
grows with the square root of m (Harik et al., 1999)
and the time to convergence also grows with the square
root of m (Mühlenbein & Schlierkamp-Voosen, 1993).

A quadratic time complexity for exponentially scaled
problems does not seem that bad, and we may specu-
late that it diminishes the relevance of a fixed mutation
operator as a means of introducing diversity in the pop-
ulation. Notice that a fixed mutation operator needs
O(`k) trials in order to discover a k-bit building block
without messing up with the remaining parts of the prob-
lem (Mühlenbein, 1992).

The relevance of other building block diversity preser-
vation techniques such as the one used in the Linkage
Learning Genetic Algorithm (LLGA) (Harik, 1997) may
also be not so important after all. The LLGA was able
to solve exponentially scaled problems in almost linear
time (Harik, 1997), (Lobo et al., 1998) due to a built-in
probabilistic expression mechanism that preserved build-
ing block diversity and partly eliminated the problem of
random genetic drift. Nevertheless, while the LLGA ex-
celled in exponentially scaled problems, it did not do as
well when solving other type of problems.

The time complexity estimates presented herein are for



idealized situations because they assume perfect build-
ing block mixing. With traditional simple GAs, this as-
sumption only occurs if the building blocks are trivial
(size-1 building blocks), or when the user has knowledge
about the structure of the problem (which is usually not
true). However, with more advanced GAs that are able
to learn gene linkage automatically, the assumption of
perfect mixing is well approximated, and we should only
expect to observe a slightly worse performance than in
the idealized perfect mixing situation. The reason is that
there may be a little overhead in population sizing and
run duration needed by these advanced GAs in order
to learn a problem’s structure, without which efficient
building block mixing is not possible. Examples of such
GAs are the Bayesian Optimization Algorithm (Pelikan,
Goldberg, & Cantú-Paz, 1999) and the Extended Com-
pact Genetic Algorithm (Harik, 1999).

Acknowledgements

This work was done while the first author was a visit-
ing research scholar at the Illinois Genetic Algorithms
Laboratory.

Professor Goldberg’s contribution to this paper was
sponsored by the Air Force Office of Scientific Re-
search, Air Force Materiel Command, USAF, under
grant F49620-97-1-0050. Research funding for this work
was also provided by the National Science Foundation
under grant DMI-9908252. Support was also provided by
a grant from the U. S. Army Research Laboratory under
the Federated Laboratory Program, Cooperative Agree-
ment DAAL01-96-2-0003. The U. S. Government is au-
thorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Air Force Office of Scientific
Research, , the National Science Foundation, the U. S.
Army, or the U. S. Government.

References

Asoh, H., & Mühlenbein, H. (1994). On the mean conver-
gence time of evolutionary algorithms without selec-
tion and mutation. In Davidor, Y., Schwefel, H.-P., &
Männer, R. (Eds.), Parallel Problem Solving from Na-
ture, PPSN III (pp. 88–97). Berlin: Springer-Verlag.

Crow, J. F., & Kimura, M. (1970). An introduction to pop-
ulation genetics theory. New York: Harper and Row.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Genetic
algorithms, noise, and the sizing of populations. Com-
plex Systems, 6 , 333–362.

Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain
analysis of genetic algorithms. In Grefenstette, J. J.

(Ed.), Proceedings of the Second International Confer-
ence on Genetic Algorithms (pp. 1–8). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Harik, G. R. (1997). Learning gene linkage to efficiently
solve problems of bounded difficulty using genetic algo-
rithms. Doctoral dissertation, University of Michigan,
Ann Arbor. Also IlliGAL Report No. 97005.

Harik, G. R. (1999). Linkage Learning via Probabilistic
Modeling in the ECGA. (IlliGAL Report No. 99010).
Urbana: University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory.

Harik, G. R., Cantú-Paz, E., Goldberg, D. E., & Miller,
B. L. (1999). The gambler’s ruin problem, genetic al-
gorithms, and the sizing of populations. Evolutionary
Computation, 7 (3), 231–253.

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999).
The compact genetic algorithm. IEEE Transactions on
Evolutionary Computation, 3 (4), 287–297.

Hartl, D. L., & Clark, A. G. (1997). Principles of popula-
tion genetics (3 ed.). Sunderland, Massachusetts: Sin-
auer Associates.

Kimura, M. (1964). Diffusion models in population genet-
ics. J. Appl. Prob., 1 , 177–232.

Kimura, M., & Ohta, T. (1969). The average number of
generations until fixation of a mutant gene in a finite
population. Genetics, 61 , 763–771.

Lobo, F. G., Deb, K., Goldberg, D. E., Harik, G. R.,
& Wang, L. (1998). Compressed introns in a linkage
learning genetic algorithm. In Koza, J. R., Banzhaf,
W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B.,
Garzon, M. H., Goldberg, D. E., Iba, H., & Riolo, R. L.
(Eds.), Genetic Programming 98 (pp. 551–558). San
Francisco: Morgan Kaufmann Publishers.

Mühlenbein, H. (1992). How genetic algorithms really
work: I.Mutation and Hillclimbing. In Männer, R., &
Manderick, B. (Eds.), Parallel Problem Solving from
Nature, 2 (pp. 15–25). Amsterdam, The Netherlands:
Elsevier Science.

Mühlenbein, H., & Paaß, G. (1996). From recombination
of genes to the estimation of distributions I. binary
parameters. In Voigt, H.-M., Ebeling, W., Rechen-
berg, I., & Schwefel, H.-P. (Eds.), Parallel Problem
Solving from Nature, PPSN IV (pp. 178–187). Berlin:
Springer-Verlag.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predic-
tive models for the breeder genetic algorithm: I. Con-
tinuous parameter optimization. Evolutionary Compu-
tation, 1 (1), 25–49.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E.
(1999). BOA: the bayesian optimization algorithm. In
Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., & Smith, R. E. (Eds.),
GECCO-99: Proceedings of the Genetic and Evolution-
ary Computation Conference (pp. 525–532). San Fran-
cisco, CA: Morgan Kaufmann.

Thierens, D., Goldberg, D. E., & Pereira, A. (1998).
Domino convergence, drift, and the temporal-salience
structure of problems. In Proceedings of 1998 IEEE In-
ternational Conference on Evolutionary Computation
(pp. 535–540). Piscataway, NJ: IEEE.


