
Information Sciences 167 (2004) 217–232

www.elsevier.com/locate/ins
The parameter-less genetic algorithm
in practice

Fernando G. Lobo a,*, David E. Goldberg b

a Area Departamental de Engenharia Electr�onica e Computac�~ao, FCT, Universidade do

Algarve, Campus de Gambelas, 8000 Faro, Portugal
b Department of General Engineering, University of Illinois at Urbana-Champaign, Urbana,

IL 61801, USA

Received 20 May 2002; received in revised form 27 September 2002; accepted 18 March 2003
Abstract

The parameter-less genetic algorithm was introduced a couple of years ago as a way

to simplify genetic algorithm operation by incorporating knowledge of parameter

selection and population sizing theory in the genetic algorithm itself. This paper shows

how that technique can be used in practice by applying it to a network expansion

problem. The existence of the parameter-less genetic algorithm stresses the fact that

some problems need more processing power than others. Such observation leads to the

development of a problem difficulty measure which is also introduced in this paper. The

measure can be useful for comparing the difficulty of real-world problems.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Genetic algorithms; Parameter selection; Problem difficulty; Network

optimization problems

1. Introduction

The parameter-less genetic algorithm was proposed recently [7]. Its moti-

vation was to make genetic algorithms (GAs) easier to use and to make them
* Corresponding author.

E-mail addresses: flobo@ualg.pt (F.G. Lobo), deg@uiuc.edu (D.E. Goldberg).

0020-0255/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2003.03.029

mail to: flobo@ualg.pt

218 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
available to as large an audience as possible. The need for solving problems

occur in a variety of domains and GAs can be useful tools for that purpose.

What has been difficult up to now is the interaction between the GA and the

user; GAs require the specification of a number of parameters for which users
usually do not know how to specify. In other words, the user needs to have a

substantial amount of GA expertise in order to apply them in a proper way.

But most users are not (and should not be required to be) experts in the field of

genetic algorithms. An analogy comes handy here. When people use an elec-

trical appliance, say a toaster, they do not have to know about Ohm’s law or

about the internal workings of the toaster. Yet, people use toasters everyday,

and most of them have never heard about Ohm’s law. 1 Likewise, with genetic

algorithms, users should not need to worry about population sizes, crossover
probabilities, and other GA internals. Yet, people should be able to use GAs,

even if they do not understand much about how they work.

In the original paper [7], the validity of the parameter-less GA was illus-

trated on artificial problems. In this paper it is applied to a quasi-real-world

problem, a scenario that users are more likely to encounter in practice. Arti-

ficial problems are useful for testing GAs under carefully controlled conditions

so that specific aspects of the algorithm can be analyzed. If that was not done,

it would not be possible to get a better understanding of GAs, and it would not
be possible to improve the state of the art in GA technology. However, it is also

important to keep an eye on the applications side and see how the GA per-

forms on problems that are not artificially constructed. Moreover, it is

important to illustrate how the lessons learned from theory can be transferred

to a practical context. That is precisely what we do here.

The paper starts by reviewing the parameter-less genetic algorithm. Then,

Section 3 describes the network expansion problem, followed by the applica-

tion of the parameter-less technique on Section 4. Section 5 presents an
empirical measure of problem difficulty. Finally, the paper outlines some

extensions to this work.
2. Background

This section briefly reviews the parameter-less GA. With the parameter-less

GA, the user does not need to specify the selection rate, crossover probability

and the population size parameters.
1 This analogy is taken from [9] in the context of software design and used here in the context

of genetic algorithm usability.

F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232 219
2.1. Selection rate and crossover probability

The selection rate s and crossover probability pc are preset to fixed values

(s ¼ 4, pc ¼ 0:5) in order to obey the schema theorem and ensure building
block growth.

At first sight, one could argue that setting s ¼ 4 and pc ¼ 0:5 for all

problems constitutes a similar kind of mistake that other practitioners have

done in the past when adopting the so-called ‘‘standard parameter settings’’.

However, there is an important difference in this case. Previous theoretical

studies [4] have shown that there must be a balance between selection

pressure and schema disruption in order to ensure building block growth.

This argument comes from a simplified view of the schema theorem. Let
/ðH ; tÞ be the effect of the selection operator on schema H at generation t,
and �ðH ; tÞ be the disruption factor on schema H due to the crossover

operator. Then the overall net growth ratio on schema H at generation t is
given by
/ðH ; tÞ½1� �ðH ; tÞ�
The above expression is nothing but a simplification of the schema theorem.

Under the conservative hypothesis that a schema is destroyed during the
crossover operator, and substituting s and pc in the formula above, we obtain

that the growth ratio of a schema is given by the expression:
sð1� pcÞ
Setting s ¼ 4 and pc ¼ 0:5 gives a net growth factor of 2, and ensures that the

necessary building blocks will grow. Other values of s and pc could also be used

as long as the net growth factor is somewhat greater than 1, and some care is

taken not to fall in the extreme cases of a very high or very low selection

pressure [4].
It is important to stress that we are not saying that these parameter values

(s ¼ 4 and pc ¼ 0:5) are the best ones for all problems. Small variations of these

values (for example, s ¼ 3 and pc ¼ 0:6) are likely to yield similar GA per-

formance. Since we are interested in simplifying genetic algorithm operation,

we decided to set s ¼ 4 and pc ¼ 0:5, because doing so relieves the user from

having to make guesses on these parameter values. In other words, setting s
and pc to fixed values is a rational decision which is backed up by previous

theoretical work.
2.2. Population sizing

Regarding the size of the population, the parameter-less GA uses a tech-

nique that keeps increasing the population size in an attempt to reach the right

220 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
sizing. It does so by establishing a race among multiple populations of various

sizes (powers of 2). The different populations are at different stages of evolu-

tion, the smaller ones being ahead of the larger ones in terms of generations.

For example, a snapshot of the parameter-less GA at a particular point in time
could reveal the existence of three populations whose sizes could be 256, 512,

and 1024. The population of size 256 could be running its 30th generation,

while the population of size 512 could be on generation 6, and the population

of size 1024 could still be on generation 1.

As time goes by, the smaller populations are eliminated and larger popu-

lations are created. The creation and deletion of populations is controlled by

inspecting the average fitness of the populations and taking rational decisions

based on those readings. For example, if the population of size 512 has an
average fitness greater than that of the population of size 256, then there is no

point in continuing running the small population anymore because it is very

unlikely that the smaller population will produce a fitter individual than the

larger population. Recall that the larger population is at a much earlier stage

of evolution but already contains better individuals than those contained in

the smaller one, a clear indication that the smaller population is not large

enough.

The overall net effect of this strategy is equivalent to a scheme that con-
tinuously increases the population size as time goes by. The interested reader

should refer to [7,11] for a through description and implementation details of

the parameter-less GA. What we would like to stress at this point is the need of

large populations, something that still seems to be underestimated by large

parts of the evolutionary computation community.

2.3. The need of large populations

All search algorithms have an initial state and perform some sort of

inference in order to move from state to state. In the context of genetic

algorithms, the state is represented by the population, and the GA moves

from population to population. The population can be seen as a collection of

data that summarize the past experiences of the GA. Therefore, the larger the

population the more accurately the GA will be able to infer the next state.
Indeed, what the GA does is nothing but inference from data. Researchers in

the field of Data Mining, also known as Knowledge Discovery in Databases,

deal precisely with this type of inference problem. However, in many situa-

tions the lack of a sufficient amount of data is the problem. Without suffi-

cient data it is not possible to do accurate inference. Within a GA

framework, obtaining more data is not a problem because it is always pos-

sible to generate more data; that is simply a matter of working with larger

populations. The question is how large is large enough, a topic that is dis-
cussed next.

F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232 221
2.4. How large is large enough?

The population size is a critical parameter in a GA. Too small and the GA

converges to poor solutions. Too large and the GA spends unnecessary com-
putational resources. There are theoretical models [3,6] that can be used to size

populations but they are not easy to apply in practice because they rely on

parameters that are usually unknown and are also hard to estimate for real

world problems. The intuition behind population sizing in GAs, however, is

that it is related to the problem’s difficulty; the more difficult a problem is the

larger the population should be. However, since problem difficulty is also hard

to estimate, GA practitioners usually have no other way to size populations

other than do experiments with a number of different sizes and see what works
best.

Although not trivial to put in practice, the theoretical models on population

sizing are important and crucial for understanding the role of the population in

a GA. Among other things, an important lesson of those models is that setting

the population size to a fixed value regardless of the problem’s size and diffi-

culty, is certainly a mistake.

In practice, the bottom line is that the user has to do some experimentation

and guess the population size. But guessing right is pure luck and most likely
the user will guess wrong by doing one of the following two mistakes: (1) a

population size that is too small, or (2) a population size that is too large.

Type I error: undersized population. If the population size is not big enough,

the GA runs out of steam prematurely and converges to sub-optimal solu-

tions; the user pays a quality penalty.

Type II error: oversized population. If the population size is too large, the

GA wastes unnecessary computational resources spending more time than
it is necessary; the user pays a time penalty.

These two types of errors are depicted in Fig. 1. The parameter-less GA uses

a technique that was developed on purpose to eliminate the need of guessing

the population size, and therefore, avoid the errors shown in Fig. 1. The basic

idea is to continuously increase the population size in an attempt to reach the

right sizing. When to stop this growing process of the population is left to the

user. He/she will decide when to stop as soon as he/she realizes that is not
worth to wait more for an improvement in solution quality.

2.5. A note about mutation

The parameter-less technique ignores the mutation operator. We recognize

that mutation can be important for many problems but have not considered yet
how to automate it within the rest of the parameter-less GA framework.

oversized
populationoptimal

population size

time penalty

undersized population

time

quality penalty

quality
solution

Fig. 1. Population sizing in genetic algorithms. Too small and the user pays a quality penalty. Too

large and the user pays a time penalty.

222 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
Mutation makes small variations on solutions and thus is not likely to benefit

from very large populations. On the contrary, crossover requires large popu-

lation sizes in order to mix the bits and pieces of the different solutions.
Section 4 shows the application of the technique to a network expansion

problem, but before doing that, let us present what the network problem itself.
3. A network expansion problem

This section describes a utility network expansion problem. For its exposi-

tion we focus on the particular case of an electrical network. Without further

considerations, let us describe what the network expansion problem is with an

illustrative example shown in Fig. 2. The figure shows a region that does not
Fig. 2. A hypothetical 10-bit (10-transformer) network expansion problem instance.

F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232 223
have electrical facilities, an hypothetical instance of the network expansion

problem.

There are four types of entities depicted in the figure: cables, substations,

possible transformer locations, and houses. These entities are represented in
the figure by lines, squares, triangles, and dots respectively. In the example

there are five substations (squares) connected by cables in a network. The

objective of the problem is to expand the network so that the houses (dots) can

get electricity. Moreover, the electrical utility company would like to do so with

minimum cost.

The substations are the only entities that take part of the electrical infra-

structure. The transformers (triangles in the figure) do not exist yet but there

are a number of possible locations where they can be built. These locations are
given in advance by the electrical utility and may take into account a variety of

restrictions.

There are many ways in which the houses can be connected to the existing

network. The only restriction is that the end result has to be a tree (a graph

with no cycles) and it is allowed to use a subset of the possible location sites to

build transformers.

The total cost of expanding the network is the sum of the costs of all the

cables and transformers that need to be built. Each transformer that is built has
a fixed cost associated and the cost of each cable is proportional to its length.

The electrical company must decide which cables and transformers should be

built in order to deliver electricity using the minimum amount of money as

possible.

In summary, one has to decide which transformers should be built. Once

that decision is taken, expanding the network can be done with a straight-

forward computation.

Figs. 2 and 3 illustrate the fitness function in four steps by showing the
construction of the network on a hypothetical 10-transformer network prob-

lem. There are 10 possible locations (the 10 triangles in Fig. 2) to build

transformers. For each location, a binary decision must be made by the power

company: build or not build a transformer in that location. In Fig. 3––part (a),

four locations are selected for building transformers and the other six are left

out. The example corresponds to solution 0101000110, which is one out of the

210 possible solutions. Then, a graph is constructed in the following way. For

each selected transformer node, an edge is added from that node to all the
existing substation nodes and to all the other selected transformers. Following

that, a minimum spanning tree of the graph is computed. There are a variety of

algorithms to find minimum spanning trees (see for example [1]). Notice that

for the minimum spanning tree computation, the edges connecting the sub-

stations have zero cost because these edges correspond to existing cables and

no additional cost is needed to be spent by the utility company. Once the tree is

constructed, each house can be connected to the network by adding an edge

Fig. 3. Example of objective function evaluation in a hypothetical 10-bit (10-transformer) problem

instance. (a) Four transformer nodes are selected to be built. They are represented on the figure by

the large circles. (b) A graph is constructed by adding edges from every selected transformer to all

the other selected transformers and to all the substations. (c) A minimum spanning tree of the

graph is computed. (d) Each house connects to the closest node of the minimum spanning tree.

224 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
from the house to the closest node of the tree. The final result is shown on Fig.

3––part (d).

This problem has similarities with a well known NP-complete problem from

graph theory known as the minimum steiner tree problem [2]. The difference is
that in the minimum steiner tree problem, the possible location for the trans-

former nodes are not given in advance. There are a number of approximate

algorithms and heuristics to solve the minimum steiner tree problem. In this

paper we do not make any comparison between the GA and these other

heuristics. Moreover, the GA would not take into consideration any special

properties of the problem and it will treat it as a pure black-box function. It

should be stressed that the purpose of the paper is not to show that the GA is

superior or even competitive with specialized algorithms specifically tuned for

F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232 225
this particular problem. Instead, the purpose of the paper is to illustrate how

GA technology may be applied in an environment where not much is known

other than the objective function values of individual solutions, and also to

illustrate the transition from laboratory problems to real-world problems.
We have described a method to expand the existing network once the

transformers to be built are specified. The decision variables of the problem are

binary variables, one for each possible transformer location, indicating whe-

ther that transformer should be built or not. Thus, if the electrical utility

company specifies ‘ possible locations to build transformers, the total number

of possible network configurations is 2‘ and the application of a genetic

algorithm is straightforward.

The network expansion problem has several characteristics that contrast
with those of purely artificial problems. Some of them are listed below:

• The global optima is unknown.

• The problem’s structure is unknown.

• We do not know what might constitute building blocks.

• We do not know if the problem is easy or hard.
4. Parameter-less GA application

This section shows the application of the parameter-less GA to the network

expansion problem described during the previous section. In particular, the

GA is applied to a 60-bit problem instance. It should be stressed that the

parameter-less technique relieves the user from having to specify the popula-
tion size, selection rate, and crossover probability, but it does not relieve the

user from specifying the type of GA operators to be used. In fact, the

parameter-less technique can be used with any kind of GA.

In a first experiment, we use the parameter-less technique coupled with a

simple GA using uniform crossover and with mutation turned off. Table 1

shows a trace of the execution of a single run of the parameter-less GA. The

algorithm starts with a population of size 16 and continuously increases

(doubles) its size. For each population size, Table 1 shows the best solution
quality found. For example, when using a population of size 128, the best

solution had a cost of 1990.25.

A number of observations are worth mentioning. First and foremost, the

experiment is very simple (of course, there are no parameters!). Larger and

larger populations are continuously spawned. By doing that, the parameter-less

technique injects more and more power into the GA as time goes by.

The parameter-less GA was stopped when the population of size 65 536 had

already converged but the population of size 131 072 was still in its early
generations (see [7] and [11] for details of the execution of the algorithm). In

Table 1

The parameter-less GA on a 60-bit problem instance

Population size Solution quality with parameter-less SGA

16 2131.79

32 2109.33

64 2004.93

128 1990.25

256 1971.50

512 1984.76

1024 1986.49

2048 1967.21

.

Fig. 4. The best solution found by the parameter-less GA on a 60-bit problem instance.

226 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
this specific example, the user (ourselves) stopped the parameter-less GA at

that point because we did not want to wait longer for a better solution quality.

That of course depends on a problem by problem basis and from user to user.

For instance, another user might have been happy with the solution quality of

1990.25 and might have stopped the parameter-less GA by the time that

solution was found (population size 128 in the example).

The best solution was found at population size 2048 (see Fig. 4). Larger

populations also found that solution but could not get any better. If the user
knew that beforehand he/she would have pressed the stop button at population

size 2048 and would have saved computational time. Unfortunately, the user

does not know that beforehand. In fact, the user cannot predict what would

happen if he/she had let the algorithm run for a longer time; it is unknown

whether the algorithm can reach a better solution quality or not.

The only thing that we can say is that if the user is not satisfied with the

solution quality that he has gotten so far then the best option is to put more

F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232 227
power into the GA and that can be done by increasing the population size; the

parameter-less GA does that automatically.

Since the population size doubles every time a new population is spawned, it

should be expected that using the parameter-less techniques has an overhead
when compared with a GA that starts with an optimal population size. A

detailed analysis for the worst case scenario has been made elsewhere [14]. In

practice, the worst-case scenario is very unlikely to occur, and its actual per-

formance is usually within a factor of 2 or 3 of a GA that starts with optimal

parameter settings.
4.1. What about other parameter settings?

It is time to stand back and ask ourselves what option would a user have if

the parameter-less technique was not available. Perhaps he/she would have

done what many other practitioners have been doing in the past; try different
parameter combinations and see what works best, or, use the so-called

‘‘standard settings’’ (population size in the range 50–100, pc in 0.6–0.9, small

pm, and so on).

We would not be doing exhaustive parameter combinations and compare

them with the parameter-less technique, but we can easily experiment with the

standard settings just to see what happens. Doing that (population size 100,

pc ¼ 0:7, pm ¼ 1=‘, binary tournament selection), the SGA could not reach the

target solution obtained by the parameter-less technique not even after a
million function evaluations. On the contrary, various executions of the

parameter-less GA were able to consistently get to that target solution of

1967.21 with less than a couple hundred thousand fitness function evaluations.

This experiment confirms again that using the so-called ‘‘standard settings’’ is

no recipe for good performance. On the contrary, it is a mistake and should be

avoided.
4.2. What about other operators?

The parameter-less technique relieves the user from setting parameters such

as population size, selection rate, and crossover probability, but says nothing

about which GA operators to choose from. That design decision was done on
purpose when the parameter-less technique was originally developed. This way,

the technique becomes general and may be applied with any kind of GA.

Instead of using a parameter-less simple GA, we could have used a

parameter-less extended compact genetic algorithm (ECGA) [5] or a parameter-

less Bayesian optimization algorithm (BOA) [13]. On difficult problems, these

more advanced techniques have shown to outperform the traditional simple

GA by several orders of magnitude.

228 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
The parameter-less ECGA was tested on the same 60-bit network problem

instance and the solution quality obtained was the same as the one obtained by

the parameter-less simple GA. Moreover, it did so using more or less of the

same number of fitness function evaluations. This may be an indication that
the particular problem instance is not a very difficult problem after all. On the

other hand, the problem is also not that easy because otherwise the simple GA

would not require a population of size 2048; a smaller size would have been

enough.

This discussion on problem difficulty can be explored further and that is

precisely what we do in the next section.
5. Towards an empirical measure of problem difficulty

During the previous sections we have argued that the amount of computing

power that needs to be put in order to solve a problem is related to the

problem’s difficulty. Different facets of problem difficulty have been pointed

out by researchers in the evolutionary computation field. Among these diffi-
culties are isolation, deception, multi-modality, bad building block scaling, and

noisy fitness functions.

From a practical perspective it would be nice to estimate the degree of

difficulty of a given problem because then it would be possible to estimate the

amount of computing power (and also time) needed to solve it.

There has been a few studies regarding problem difficulty estimation.

Among them, the works of [10,12,15] have proposed different measures that

can be useful to predict if one operator is likely to behave better than other.
One thing that can give an overall measure of a problem’s difficulty is the

amount of effort that is required to solve it. In GAs, the amount of effort can be

measured by the minimum number of fitness function evaluations needed by

the GA to get reliably to some desired target solution. It is possible to go

further and define an empirical measure of a problem’s difficulty, call it Rhard,

which can be defined as the minimum number of function evaluations needed

by the parameter-less GA for solving the given problem up to a certain solution

quality divided by the minimum number of function evaluations needed by the
parameter-less simple GA to solve a onemax problem of the same size. The

onemax problem (that of counting 1s in a bit string) is chosen as a reference for

comparing the difficulty of problems because in some sense it is the easiest of all

problems for the GA––there is no interaction among the decision variables of

the problem, the function is completely decomposable, and the scaling is uni-

form (all bits give the same contribution to the fitness function).

Let f̂ be the minimum number of fitness function evaluations needed by the

parameter-less GA to solve a problem to a certain solution quality, and let
fonemax be the minimum number of fitness function evaluations needed by the

F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232 229
parameter-less GA to solve a onemax problem of the same length. The hard-

ness ratio, Rhard, can be defined as follows:
Rhard ¼
f̂

fonemax
This definition is an empirical measure of a problem’s difficulty regarding

crossover-based GAs. A ratio Rhard ¼ 1 indicates that the problem is as difficult

as the onemax. A ratio Rhard ¼ r indicates that the problem is r times more

difficult than its onemax counterpart. Although this empirical measure of
problem difficulty can only be calculated after the problem itself is solved, it is a

practical measure that can be used to compare the difficulty of real world

problems from a rational basis. Thus, when doing GA applications, users can

talk about a real world problem’s difficulty and say things like: problem X is

Rhard ¼ 10, problem Y is Rhard ¼ 2000, and so on.

As an illustrative example, let us calculate the Rhard ratio for the 60-bit

network problem. Doing an average of 20 independent runs, the parameter-less

GA needs 161 200 function evaluations to get to the target solution of 1967.21.
Likewise, for a 60-bit onemax problem, the parameter-less GA needs an

average of 4200 function evaluations in order to get to the optimal solution.

Therefore, the Rhard ratio for our 60-bit network problem is 161 200/4200� 38.

More specific measures of GA difficulty could be defined as well. For

example, we could define a mixing hardness ratio, call it RmixingHard, defined as

the number of function evaluations needed by a simple GA divided by the

number of function evaluations needed by a linkage learning GA (such as the

ECGA or BOA) to reach a certain target solution.
6. Extensions

The parameter-less technique is a step forward towards making GAs easier

to use. With it, the user does not need to specify parameters such as population

size, selection rate, and crossover probabilities. However, there are still some

decisions that the user needs to make. For example, the user must specify an
encoding for the problem as well as GA operators. In the example shown in

this paper we used a bit string encoding and a uniform crossover operator.

Other choices could have been made as well but the parameter-less technique

says nothing about that.

One of the motivations of the research in linkage learning is to develop

techniques that can adapt the GA operators on a problem by problem basis.

Some of these advanced techniques have shown to outperform the traditional

simple GAs by several orders of magnitude, especially on very difficult prob-
lems. Two of such techniques are the ECGA and BOA algorithms that were

230 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
mentioned awhile ago. These advanced algorithms, however, do not come for

free. They do a through analysis of the population and require more effort than

the simple GA when moving from population to population (note that the

extra effort is needed by the operation of the algorithm itself, not by an extra
amount of fitness function evaluations). In many problems the extra opera-

tional effort of the ECGA or BOA are well worth it, but for other problems the

more traditional crossover operators might suffice.

This discussion leads us back again to the issues of problem difficulty esti-

mation. If we could predict that the problem is very difficult then we could

apply a parameter-less ECGA (or BOA). On the other hand, if we could

predict that the problem is not so difficult then we could apply a parameter-less

simple GA and save ourselves the extra computing power needed for the
operation of the more sophisticated GAs.

Since problem difficulty estimation is hard to do, a possible solution to this

dilemma could be to run two parameter-less GAs simultaneously (a heavy-

weight one such as the ECGA or BOA, and a light-weight one such as the

simple GA or the compact GA [8]) using a trick similar to the one used by the

parameter-less technique to tackle multiple populations.
7. Summary and conclusions

This paper reviewed the parameter-less genetic algorithm and showed a

practical application of it to a utility network expansion problem. The problem

has characteristics that contrast with those of pure artificial problems, and
constitutes a more representative scenario of what users might encounter in

practice. Another important contribution of this paper is the introduction of an

empirical measure of problem difficulty. The measure is enabled by the exis-

tence of the parameter-less GA, and can very useful for comparing the diffi-

culty of real-world problems.

With the parameter-less GA the user does not have to do trial and error

experiments to find adequate parameter settings for the GA. It is our strong

belief that GAs should be designed with the user in mind. That is the only way
to have more and more people using them. This paper makes an important

effort in that direction and we hope it can be useful for practitioners seeking to

apply state of the art GA technology to solve real world problems.
Acknowledgements

This work was sponsored in part by the Portuguese Foundation for Science

and Technology (FCT/MCT), under grant POSI/SRI/42065/2001 and grant
POCTI/MGS/37970/2001.

F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232 231
The work was also sponsored in part by the Air Force Office of Scientific

Research, Air Force Materiel Command, USAF, under grants F49620-00-

0163, the National Science Foundation under grant DMI-9908252. The US

Government is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are our own and should not be

interpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of the Air Force Office of Scientific Research, the

National Science Foundation, the US Army, or the US Government.
References

[1] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT Press, McGraw-Hill,

1993.

[2] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness, Freeman, 1979.

[3] D.E. Goldberg, K. Deb, J.H. Clark, Genetic algorithms, noise, and the sizing of populations,

Complex Systems 6 (1992) 333–362.

[4] D.E. Goldberg, K. Deb, D. Thierens, Toward a better understanding of mixing in genetic

algorithms, Journal of the Society of Instrument and Control Engineers 32 (1) (1993) 10–

16.

[5] G.R. Harik, Linkage learning via probabilistic modeling in the ECGA, IlliGAL Report No.

99010, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory,

Urbana, 1999.

[6] G.R. Harik, E. Cant�u-Paz, D.E. Goldberg, B.L. Miller, The gambler’s ruin problem, genetic

algorithms, and the sizing of populations, in: T. B€ack (Ed.), Proceedings of 1997 IEEE

International Conference on Evolutionary Computation, IEEE Press, New York, 1997, pp. 7–

12.

[7] G.R. Harik, F.G. Lobo, A parameter-less genetic algorithm, in: W. Banzhaf, J. Daida, A.E.

Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith (Eds.), GECCO-99: Proceedings of

the Genetic and Evolutionary Computation Conference, Morgan Kaufmann, San Francisco,

CA, 1999, pp. 258–267.

[8] G.R. Harik, F.G. Lobo, D.E. Goldberg, The compact genetic algorithm, IEEE Transactions

on Evolutionary Computation 3 (4) (1999) 287–297.

[9] R.E. Johnson, Frameworks¼ (components+ patterns), Communications of the ACM 40 (10)

(1997) 39–42.

[10] T. Jones, S. Forrest, Fitness distance correlation as a measure of problem difficulty for genetic

algorithms, in: L. Eshelman (Ed.), ICGA-95: Proceedings of the Sixth International

Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, 1995, pp. 184–

192.

[11] F.G. Lobo, The parameter-less genetic algorithm: Rational and automated parameter

selection for simplified genetic algorithm operation, Doctoral dissertation, Universidade Nova

de Lisboa, Lisboa, 2000.

[12] B. Manderick, M. de Weger, P. Spiessens, The genetic algorithm and the structure of the

fitness landscape, in: R.K. Belew, L.B. Booker (Eds.), ICGA-91: Proceedings of the Fourth

International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1991,

pp. 143–150.

232 F.G. Lobo, D.E. Goldberg / Information Sciences 167 (2004) 217–232
[13] M. Pelikan, D.E. Goldberg, E. Cant�u-Paz, BOA: the bayesian optimization algorithm, in:

W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith (Eds.),

GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, Morgan

Kaufmann, San Francisco, CA, 1999, pp. 525–532.

[14] M. Pelikan, F.G. Lobo, Parameter-less genetic algorithm: a worst-case time and space

complexity analysis, IlliGAL Report No. 99014, University of Illinois at Urbana-Champaign,

Illinois Genetic Algorithms Laboratory, Urbana, 1999.

[15] E.D. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the difference,

Biological Cybernetics 63 (1990) 325–336.

	The parameter-less genetic algorithm in practice
	Introduction
	Background
	Selection rate and crossover probability
	Population sizing
	The need of large populations
	How large is large enough?
	A note about mutation

	A network expansion problem
	Parameter-less GA application
	What about other parameter settings?
	What about other operators?

	Towards an empirical measure of problem difficulty
	Extensions
	Summary and conclusions
	Acknowledgements
	References

