
Parameter-less Optimization with the Extended

Compact Genetic Algorithm and Iterated Local

Search

Cláudio F. Lima and Fernando G. Lobo

ADEEC-FCT, Universidade do Algarve
Campus de Gambelas, 8000 Faro, Portugal

{clima,flobo}@ualg.pt

Abstract. This paper presents a parameter-less optimization frame-
work that uses the extended compact genetic algorithm (ECGA) and
iterated local search (ILS), but is not restricted to these algorithms. The
presented optimization algorithm (ILS+ECGA) comes as an extension
of the parameter-less genetic algorithm (GA), where the parameters of
a selecto-recombinative GA are eliminated. The approach that we pro-
pose is tested on several well known problems. In the absence of domain
knowledge, it is shown that ILS+ECGA is a robust and easy-to-use op-
timization method.

1 Introduction

One of the major topics of discussion within the evolutionary computation com-
munity has been the parameter specification of the evolutionary algorithms
(EAs). After choosing the encoding and the operators to use, the EA user needs
to specify a number of parameters that have little to do with the problem (from
the user perspective), but more with the EA mechanics itself. In order to release
the user from the task of setting and tuning the EA parameters, several tech-
niques have been proposed. One of these techniques is the parameter-less GA,
which controls the parameters of a selecto-recombinative GA. This technique
can be applied to various types of (selecto-recombinative) GAs, and in con-
junction with a high-order estimation of distribution algorithm (EDA), such as
the extended compact GA (ECGA) [1] or the Bayesian optimization algorithm
(BOA) [2], results in a powerful and easy-to-use search algorithm. Multivari-
ate EDAs have shown to outperform the simple GA (SGA) by several orders
of magnitude, especially on very difficult problems. However, these advanced
search algorithms don’t come for free, requiring more computational effort than
the SGA when moving from population to population. In many problems this
extra effort is well worth it, but for other (less complex) problems, a simpler
algorithm can easily outperform a multivariate EDA.

Typical EAs are based on two variation operators: recombination and mu-
tation. Recombination and mutation search the solution space in different ways
and with different resources. While recombination needs large populations to



2

combine effectively the necessary information, mutation works best when ap-
plied to small populations during a large number of generations. Spears [3] did a
comparative study between crossover and mutation operators, and theoretically
demonstrates that there were some important characteristics of each operator
that were not captured by the other.

Based on these observations, we propose a new parameter-less optimization
framework, that consists of running two different search models simultaneously.
The idea is to use the best of both search strategies in order to obtain an algo-
rithm that works reasonably well in a large class of problems. The first method
can be a parameter-less ECGA, based on selection and wise recombination to im-
prove a population of solutions. As a second method we can use an iterated local
search (ILS) algorithm with adaptive perturbation strength. Instead of working
with a population of solutions, the ILS iterates a single solution by means of
selection and mutation. We called optimization framework, instead of optimiza-
tion algorithm, since what we propose here is not tied up with the ECGA or our
ILS implementation. Other algorithms, such as BOA or other ILS implementa-
tions, can be considered with similar or better results. However, in this paper we
restrict ourselves to the concrete implementation of the ILS+ECGA algorithm
and the discussion of the corresponding results.

The next section reviews some of the work done in the topic of EA parame-
ter tuning/control, then describes the parameter-less GA technique, the ECGA,
and the ILS framework. Then, Section 3 describes the basic principles of the
parameter-less optimization framework and our ILS+ECGA implementation. In
Section 4, computational experiments are done to validate the proposed ap-
proach. Section 5 highlights some extensions of this work. Finally, in Section 6,
a summary and conclusions are presented.

2 Related Work

This section reviews some of the research efforts done in setting and adapting the
EAs parameters, describes the parameter-less GA technique and the mechanics
of the ECGA and ILS.

2.1 Parameter Tuning and Parameter Control in EAs

Parameter tuning in EAs involves the empirical and theoretical studies done
to find optimal settings and understand the interactions between the various
parameters. An example of that was the work of De Jong [4], where various
combinations of parameters were tested on a set of five functions. On those
experiments, De Jong verified that the parameters that gave better overall per-
formance were: population size in the range 50-100, crossover probability of
0.6, mutation probability of 0.001, and generation gap of 1.0 (full replacement
of the population in each generation). Some other empirical studies have been
conducted on a larger set of problems yielding somewhat similar results [5, 6].



3

Almost 30 years later, these parameters are still known as the “standard” pa-
rameters, being sometimes incorrectly applied to many problems. Besides these
empirical studies, some work was done to analyze the effect of one or two param-
eters in isolation, ignoring the others. Among the most relevant studies, are the
ones done on selection [7], population sizing [8, 9], mutation [10, 11], and control
maps [12, 13]. The work on population sizing is of special relevance, showing that
setting the population size to 50-100 for all problems is a mistake. The control
maps study gave regions of the parameter space (selection and crossover values)
where the GA was expected to work well, under the assumption of proper linkage
identification.

In parameter control we are interested in adapting the parameters during
the EA run. Parameter control techniques can be subdivided in three types:
deterministic, adaptive, and self-adaptive [14]. In deterministic control, the pa-
rameters are changed according to deterministic rules without using any feedback
from the search. The adaptive control takes place when there is some form of
feedback that influences the parameter specification. Examples of adaptive con-
trol are the works of Davis [15], Julstrom [16], and Smith & Smuda [17]. The
parameter-less GA technique is a mix of deterministic and adaptive rules of con-
trol, as we will see in the next section. Finally, self-adaptive control is based on
the idea that evolution can be also applied in the search for good parameter
values. In this type of control, the operator probabilities are encoded together
with the corresponding solution, and undergo recombination and mutation. This
way, the best parameter values will tend to survive because they originate bet-
ter solutions. Self-adaptive evolution strategies (ESs) [18] are an example of the
application of this type of parameter control.

2.2 Parameter-less Genetic Algorithm

The parameter-less genetic algorithm [19] is a technique that eliminates the
parameters of a selecto-recombinative GA. Based on the schema theorem [20]
and various facet-wise theoretical studies of GAs [9, 12], Harik & Lobo automated
the specification of the selection pressure (s), crossover rate (pc), and population
size (N) parameters.

The selection pressure and crossover rate are set to fixed values, according to a
simplification of the schema theorem in order to ensure the growth of promising
building blocks. Simplifying the schema theorem, and under the conservative
hypothesis that a schema is destroyed during the crossover operation, the growth
ratio of a schema can be expressed by s (1−pc). Thus, setting s = 4 and pc = 0.5,
gives a net growth factor of 2, ensuring that the necessary building blocks will
grow. If these building blocks will be able to mix in a single individual or not is
now a matter of having the right population size.

In order to achieve the right population size, multiple populations with dif-
ferent sizes are run in a concurrent way. The GA starts by firing the first pop-
ulation, with size N1 = 4, and whenever a new population is created its size is
doubled. The parameter-less GA gives an advantage to smaller populations by
giving them more function evaluations. Consequently, the smaller populations



4

Extended Compact Genetic Algorithm (ECGA)

(1) Create a random population of N individuals.
(2) Apply selection.
(3) Model the population using a greedy MPM search.
(4) Generate a new population according to the MPM found in step 3.
(5) If stopping criteria is not satisfied, return to step 2.

Fig. 1. Steps of the extended compact genetic algorithm (ECGA).

have the chance to converge faster than the large ones. The reader is referred to
Harik & Lobo [19] for details on this approach.

2.3 Extended Compact Genetic Algorithm

The extended compact genetic algorithm (ECGA) [1] is based on the idea that
the choice of a good probability distribution is equivalent to linkage learning.
The ECGA uses a product of marginal distributions on a partition of the decision
variables. These kind of probability distributions are a class of probability models
known as marginal product models (MPMs). The measure of a good MPM is
quantified based on the minimum description length (MDL) principle. According
to Harik, good distributions are those under which the representation of the
distribution using the current encoding, along with the representation of the
population compressed under that distribution, is minimal. Formally, the MPM
complexity is given by the sum Cm + Cp. The model complexity Cm is given by

Cm = log
2
(N + 1)

∑

i

(2Si − 1), (1)

where N is the population size and Si is the length of the ith subset of genes.
The compressed population complexity Cp is quantified by

Cp = N
∑

i

E(Mi), (2)

where E(Mi) is the entropy of the marginal distribution of subset i. Entropy is
a measure of the dispersion (or randomness) of a distribution, and is defined as
E =

∑n

j=1
−pj log

2
(pj), where pj is the probability of observing the outcome j

in a total of n possible outcomes.

As we can see in Figure 1, steps 3 and 4 of the ECGA differ from the simple
GA operation. Instead of applying crossover and mutation, the ECGA searches
for a MPM that better represents the current population and then generates a
new population sampling from the MPM found in step 3. This way, new indi-
viduals are generated without destroying the building blocks.



5

Iterated Local Search (ILS)

s0 = GenerateInitialSolution(seed )
s
∗ = LocalSearch(s0)

repeat
s
′ = Perturbation(s∗, history)

s
∗′ = LocalSearch(s′)

s
∗ = AcceptanceCriterion(s∗ , s

∗′, history)
until termination condition met

Fig. 2. Pseudo-code of Iterated Local Search (ILS).

2.4 Iterated Local Search

The iterated local search (ILS) [21] is a simple and general purpose meta-
heuristic that iteratively builds a sequence of solutions generated by an em-
bedded heuristic, leading to better solutions than repeated random trials of that
heuristic. This simple idea is not new, but Lourenço et al. formulated as a gen-
eral framework. The key idea of ILS is to build a biased randomized walk in
the space of local optima, defined by some local search algorithm. This walk is
done by iteratively perturbing a locally optimal solution, next applying a local
search algorithm to obtain a new locally optimal solution, and finally using an
acceptance criterion for deciding from which of these two solutions to continue
the search. The perturbation must be strong enough to allow the local search
to escape from local optima and explore different areas of the search space, but
also weak enough to avoid that the algorithm degenerates into a simple random
restart algorithm (that typically performs poorly).

Figure 2 depicts the four components that have to be specified to apply an
ILS algorithm. The first one is the procedure GenerateInitialSolution that
generates an initial solution s0. The second one is the procedure LocalSearch

that implements the local search algorithm, giving the mapping from a solution
s to a local optimal solution s∗. Any local search algorithm can be used, how-
ever, the performance of the ILS algorithm depends strongly on the one chosen.
The Perturbation is responsible for perturbing the local optima s∗, returning
a perturbed solution s′. Finally, the procedure AcceptanceCriterion decides
which solution (s∗ or s∗′) will be perturbed in the next iteration. An important
aspect in the perturbation and the acceptance criterion is to introduce a bias
between intensification and diversification of the search. Intensification in the
search can be reached by applying the perturbation always to the best solu-
tion found and using small perturbations. On the other hand, diversification is
achieved by accepting every new solution s∗′ and applying large perturbations.

3 Two Search Models, Two Tracks, One Objective

Different approaches have been proposed to combine global search with local
search. A common practice is to combine GAs with local search heuristics. It has



6

been used so often that originated a new class of search methods called memetic
algorithms [22]. In this work we propose something different, the combination of
two global search methods based on distinct principles. By principles we mean
variation operators, selection methods, and population management policies.
The ECGA is a powerful search algorithm based on recombination to improve
solutions, however at the cost of extra computation time (needed to search for
a good MPM) in each generation. For hard problems this effort is well worth it,
but for other problems, less complex search algorithms may do. This is where ILS
comes in. As a light mutation-based algorithm, ILS can quickly and reliably find
good solutions for simpler or mutation-tailed problems. What we propose is to
run ILS and ECGA simultaneously. This “pseudo-parallelism” is done by giving
an equal number of function evaluations to each search method alternately. ILS
and ECGA will have their own track in the exploration of the search space,
without influencing each other. In the resulting optimization algorithm, that we
call ILS+ECGA, the search will be done by alternating between ILS and ECGA.

3.1 Parameter-less ECGA

The parameter-less GA technique is coupled together with the ECGA. An im-
portant aspect of our implementation is the saving of function evaluations. Since
the crossover probability is always equal to 0.5, there is no need of reevaluating
the individuals that are not sampled from the model. This way, half of the total
number of function evaluations are saved.

3.2 ILS with Adaptive Perturbation

In this section we describe the ILS implementation used for this work, and
present a simple but effective way to eliminate the need of specifying its param-
eters. The four components chosen for the ILS algorithm are:

Local Search: next ascent hill climber (NAHC). NAHC consists in having one
individual and keep mutating each gene, one at a time, in a predefined random
sequence, until the resulting individual is fitter than the original. In that case,
the new individual replaces the original and the procedure is repeated until no
improvement can be made further.

Initial Solution: randomly generated. Since the NAHC is fast in getting local
optima solutions, there is no need to use a special greedy algorithm.

Acceptance Criterion: accept always the last local optima obtained (s∗′) as
the solution from where the search will continue. In a way, this is done to com-
pensate the intensive selection criterion from NAHC, where just better solutions
are accepted. On the other side, with this kind of acceptance criterion we pro-
mote a stochastic search in the space of local optima.



7

Perturbation: probabilistic and greater than the mutation rate of the NAHC
(equal to 1/l). The perturbation strength is proportional to the problem size
(number of genes l). This way, the perturbation is always strong enough, what-
ever the problem size. Each allele is perturbed with probability pp = 0.05l/l =
0.05. This means that on average 5% of the genes are perturbed. However, if
the problem length is too small (for example, l ≤ 60), then the perturbation
becomes of the same order of magnitude than the mutation done by NAHC. To
avoid this, we fix the perturbation probability to 3/l for problems where l ≤ 60.
This way, we ensure that on average the perturbation strength is at least 3 times
greater than the mutation strength of NAHC. This is done to prevent pertur-
bation from being easily cancelled by the local search algorithm. Nevertheless,
the perturbation strength may not be strong enough if the attraction area of a
specific local optima is too big, leading to a situation where frequently s∗′ = s∗.
In that case, we need to increase the perturbation strength until we get out from
the attraction area of the local optima. Therefore, the perturbation strength α
is updated as follows:

αnew =

{

αcurrent + 0.02l, if s∗′ = s∗

0.05l, if s∗′ 6= s∗
(3)

This way, the updated perturbation probability is equal to αnew/l.

3.3 ILS+ECGA

The parameter-less optimization framework proposed consists of running the
two different search models more or less simultaneously. This is accomplished
by switching back and forth between one method and the other after a prede-
fined number of function evaluations have elapsed (feelapsed). Notice however
that there are minimum execution units that must be completed. For example,
a generation of the parameter-less ECGA cannot be left half done. Likewise,
a NAHC search cannot be interrupted in the middle. Therefore, care must be
taken to ensure that both methods receive approximately the same number of
evaluations and closest as possible from the defined value. For our experiments
we used feelapsed = 500. The ideal feelapsed would be equal to one, since the
computational cost of changing between methods is minimal. However, in prac-
tice, it will never happen because of the minimal execution units of the ILS and
ECGA. Since the main objective of this work is to propose a parameter-less
search method, feelapsed was fixed to a reasonable value.

Initially, ILS with adaptive perturbation runs during 500 function evalu-
ations, plus the ones needed to finish the current NAHC search. Then, the
parameter-less ECGA will run during another 500 evaluations, plus the ones
needed to complete the current generation. And the process repeats ad eter-

num until the user is satisfied with the solution quality obtained or run out of
time. This approach supplies robustness, small intervention from the user (just
the fitness function needs to be specified), and good results in a broad class of
problems.



8

4 Experiments

This section presents computer simulations on five test problems. These prob-
lems were carefully chosen to represent different types of problem difficulty. For
each problem, the performance of ILS+ECGA algorithm is compared with other
four search algorithms: the simple GA with “standard” parameters (SGA1), the
simple GA with tuned parameters (SGA2), the ILS with adaptive perturba-
tion alone (ILS), and the parameter-less ECGA alone (ECGA). For the GAs,
we use binary encoding, tournament selection, and uniform crossover (except
for ECGA). SGA1 represents a typical GA parameter configuration: population
size N = 100, crossover probability pc = 0.6, mutation probability pm = 0.001,
and selection pressure s = 2. SGA2 represents a tuned GA parameter config-
uration. For each problem, the GA parameters were tuned to obtain the best
performance. Note that they aren’t optimal parameters, but the best param-
eters found after a period of wise trials1. ILS and ECGA are tested alone to
compare with ILS+ECGA and understand the advantages of running the two
search models simultaneously.

For each problem, 20 independent runs were performed in order to get results
with statistical significance. For each run, 2,000,000 function evaluations were
allowed to be spent. For each algorithm, the mean and standard deviation of the
number of function evaluations spent to find the target solution were calculated.
For function optimization testing, each run was considered well succeeded if it
found a solution with a function value f(x1, . . . , xn) in a given neighborhood
of the optimal function value f(x1opt, . . . , xnopt). The number of runs (Rts) in
which a target solution was found was also recorded. For each problem, all al-
gorithms started with the same 20 seed numbers in order to avoid initialization
(dis)advantages among algorithms.

4.1 Test Functions

The first problem is the onemax function, that simply returns the number of
ones in a string. A string length of 100 bits is used. The optimal solution is the
string with all ones. After some tuning, SGA2 was set with N = 30, pc = 0.9,
pm = 0.005, and s = 2.

The second test function is the unimodal Himmelblau’s function, defined as
f(x1, x2) = (x2

1
+ x2 − 11)2 + (x1 + x2

2
− 7)2. The search space considered is in

the range 0 ≤ x1, x2 ≤ 6, in which the function has a single minimum at (3,2)
with a function value equal to zero. Each variable xi is encoded with 12 bits,
totalizing a 24-bit chromosome. For a successful run, a solution with a function
value smaller or equal to 0.001 must be found. After some tuning, SGA2 was set
with the parameters N = 100, pc = 0.9, pm = 0.01, and s = 2.

The third function is the four-peaked Himmelblau’s function, defined as
f(x1, x2) = (x2

1
+x2−11)2 +(x1 +x2

2
−7)2 +0.1(x1−3)2(x2 −2)2. This function

1 These trials were based on the work of Deb & Agrawal [23], since they used the
same test functions. For each trial, 5 runs were performed to get some statistical
significance.



9

is similar to the previous one, but the range is extended to −6 ≤ x1, x2 ≤ 6.
Since the original Himmelblau’s function has four minima in this range (one in
each quadrant), the added term causes the point (3,2) to be global minimum.
Each variable xi is encoded with 13 bits, giving a chromosome with 26 bits. Once
more, a run is considered successful if the function value is within 0.001 of the
global optima. The SGA2 uses N = 200, pc = 0.5, pm = 1/l, and s = 4.

The fourth function tested is the 10-variable Rastrigin’s function. This is a
massively multimodal function, known to be difficult to any search algorithm. It
is defined as f(x1, . . . , x10) = 100 +

∑

10

i=1
x2

i − 10 cos(2πxi), being each variable
defined in the range −6 ≤ xi ≤ 6. This function has a global minimum at
(0,0,...,0) with a function value equal to zero. There are a total of 1310 minima,
of which 210 are close to the global minimum. A solution with a function value
smaller or equal to 0.01 is considered a target solution. For best performance,
SGA2 was set to N = 10,000, pc = 0.9, pm = 1/l, and s = 8.

The fifth and last problem is a bounded deceptive function, that results from
the concatenation of 10 copies of a 4-bit trap function. In a 4-bit trap function
the fitness value depends on the number of ones (u) in a 4-bit string. If u ≤ 3,
the fitness is 3 − u, if u = 4, the fitness is equal to 4. The overall fitness is the
sum of the 10 independent sub-function values. For such a problem, the SGA is
only able to mix the building blocks with very large population sizes. To assure
that we find the optimal solution in all 20 runs, the SGA2 was set with N=
60,000, pc = 0.5, pm = 0, and s = 4.

4.2 Results

The results obtained can be seen in Table 1. The growing difficulty of the five
tested problems can be verified by the number of runs (Rts) in which algorithms
found a target solution, and by the number of function evaluations needed to do
so. For the onemax problem, all the algorithms found the target solution in the
20 runs. Both ILS and ILS+ECGA got the same (and the best) results. This
can be explained because the ILS is the first search method to run (500 function
evaluations) in the ILS+ECGA framework. Taking into account that both algo-
rithms used the same seed numbers, it was expected that they did similar since
the NAHC always returned the optimal solution in the first time that it was
solicited. This eventually happens because the problem is linear in Hamming
space. In fact, that’s the reason why mutation-based algorithms outperformed
the rest of the algorithms for this problem. For the remaining problems, the
SGA1 (with “standard” parameters) couldn’t find a satisfiable solution in all
runs. Although SGA1 performed well for the Himmelblau’s functions, it wasn’t
robust enough to achieve a target solution in all runs. For the 10-variable Rastri-
gin’s function, SGA1 found only 3 good solutions, and for the deceptive function,
the “standard” parameter configuration failed completely, converging always to
sub-optimal solutions. These results confirmed that setting these parameters to
all kind of problems is a mistake.

For the Himmelblau’s functions, SGA2 and ILS obtained the best results, tak-
ing half of the evaluations spent by ECGA. The ILS+ECGA algorithm, mostly



10

Table 1. Mean and standard deviation of the number of function evaluations spent to
find the target solution for the tested problems. The number of runs (Rts) in which a
target solution was found was also recorded.

SGA1 SGA2 ECGA ILS ILS+ECGA

mean 2,990 1,256 13,735 451 451
Onemax std. dev. ±189 ±258 ±5,371 ±65 ±65

Rts 20 20 20 20 20+0

Unimodal mean 2,019 1,750 3,731 1,400 3,174
Himmelblau std. dev. ±790 ±497 ±2,290 ±1,385 ±2,766

Rts 16 20 20 20 14+6

Four-peaked mean 2,414 2,850 5,205 2,593 4,990
Himmelblau std. dev. ±750 ±668 ±2,725 ±3,002 ±3,432

Rts 14 20 20 20 12+8

10-variable mean 1,555,300 570,000 149,635 >2,000,000 275,170
Rastrigin std. dev. ±306,600 ±87,240 ±85,608 — ±87,472

Rts 3 20 20 0 0+20

Bounded mean — 741,000 15,388 >2,000,000 31,870
Deceptive std. dev. — ±95,416 ±3,417 — ±15,306

Rts 0 20 20 0 0+20

due to the ILS performance, obtained a reasonable performance. Note that ILS
was the algorithm responsible for getting a good solution in 14 and 12 (in a total
of 20) runs, for unimodal and four-peaked Himmelblau’s functions, respectively.

For the 10-variable Rastrigin’s function, a different scenario occurred. ILS
failed all the attempts to find a satisfiable solution. This is not a surprising
result, since search algorithms based on local search don’t do well in massively
multimodal functions. Remember that some of the components (NAHC and
adaptive perturbation scheme) of our ILS implementation were chosen in order to
solve linear, non-correlated, or mutation-tailed problems in a quick and reliable
way. For other kind of problems, parameter-less ECGA performance is quite
good, making ILS+ECGA a robust and easy-to-use search algorithm. The ECGA
was the best algorithm for this problem, and because of it, ILS+ECGA got the
second best result, taking half of the evaluations of the SGA2.

For the bounded deceptive problem, SGA1 (converged to sub-optimal so-
lutions) and ILS (spent all of the 2,000,000 evaluations available) didn’t find
the optimal solution. For this problem, the real power of ECGA could be ver-
ified. SGA2 took almost 50 more times function evaluations than ECGA to
find the best solution in all runs. Taking advantage of the ECGA performance,
ILS+ECGA was the second best algorithm, finding the target solution in 2 times
more evaluations than the ECGA alone (as expected).

5 Extensions

There are a number of extensions that can be done based on this work:



11

– investigate other workload strategies;
– investigate interactions between the two search methods;
– investigate how other algorithms perform in the framework.

For many problems, the internal mechanisms needed by the ECGA to build
the MPM may contribute to a significant fraction of the total execution time.
Therefore, it makes sense (and it’s more fair) to divide the workload between the
two methods based on total execution time rather than on fitness function eval-
uations. Another aspect is to investigate interactions between the two methods.
How much beneficial is it to insert one (or more) ILS local optimal solution(s)
in one (or more) population(s) of the parameter-less ECGA? What about the
reverse situation? Finally, other algorithm instances such as BOA could be used
instead of the ECGA, as well as other concrete ILS implementation.

We are currently exploring some of these extensions.

6 Summary and Conclusions

This paper presented a concrete implementation of the proposed parameter-less
optimization framework that eliminates the need of specifying the configuration
parameters, and combines population-based search with iterated local search in
a novel way. The user just needs to specify the fitness function in order to achieve
good solutions for the optimization problem.

Although the combination might not perform as well as the best algorithm
for a specific problem, it is more robust than either method alone, working rea-
sonably well on problems with different characteristics.

Acknowledgments. This work was sponsored by FCT/MCES under grants
POSI/SRI/42065/2001 and POCTI/MGS/37970/2001.

References

1. Harik, G.R.: Linkage learning via probabilistic modeling in the ECGA. IlliGAL
Report No. 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL (1999)

2. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization
Algorithm. In Banzhaf, W., et al., eds.: Proceedings of the Genetic and Evolution-
ary Computation Conference GECCO-99, San Francisco, CA, Morgan Kaufmann
(1999) 525–532

3. Spears, W.M.: Crossover or mutation? In Whitley, L.D., ed.: Foundations of
Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA (1993) 221–237

4. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, Ann Arbor (1975)

5. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. In
Sage, A.P., ed.: IEEE Transactions on Systems, Man, and Cybernetics. Volume
SMC–16(1),. IEEE, New York (1986) 122–128



12

6. Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control param-
eters affecting online performance of genetic algorithms for function optimization.
In Schaffer, J.D., ed.: Proceedings of the Third International Conference on Genetic
Algorithms, San Mateo, CA, Morgan Kaufman (1989) 51–60

7. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. Proceedings of the First Workshop on Foundations of Genetic
Algorithms 1 (1991) 69–93 (Also TCGA Report 90007).

8. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of
populations. Complex Systems 6 (1992) 333–362

9. Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The gambler’s ruin prob-
lem, genetic algorithms, and the sizing of populations. In: Proceedings of the Inter-
national Conference on Evolutionary Computation 1997 (ICEC ’97), Piscataway,
NJ, IEEE Press (1997) 7–12

10. Mühlenbein, H.: How genetic algorithms really work: I.Mutation and Hillclimb-
ing. In Männer, R., Manderick, B., eds.: Parallel Problem Solving from Nature 2,
Amsterdam, The Netherlands, Elsevier Science (1992) 15–25

11. Bäck, T.: Optimal mutation rates in genetic search. In: Proceedings of the Fifth
International Conference on Genetic Algorithms. (1993) 2–8

12. Goldberg, D.E., Deb, K., Thierens, D.: Toward a better understanding of mixing
in genetic algorithms. Journal of the Society of Instrument and Control Engineers
32 (1993) 10–16

13. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of the
Fifth International Conference on Genetic Algorithms. (1993) 38–45

14. Eiben, A.E., Hintering, R., Michalewicz, Z.: Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation 3 (1999) 124–141

15. Davis, L.: Adapting operator probabilities in genetic algorithms. In Schaffer, J.D.,
ed.: Proceedings of the Third International Conference on Genetic Algorithms, San
Mateo, CA, Morgan Kaufman (1989) 61–69

16. Julstrom, B.A.: What have you done for me lately? Adapting operator probabili-
ties in a steady-state genetic algorithm. In Eshelman, L., ed.: Proceedings of the
Sixth International Conference on Genetic Algorithms, San Francisco, CA, Morgan
Kaufmann (1995) 81–87

17. Smith, R.E., Smuda, E.: Adaptively resizing populations: Algorithm, analysis, and
first results. Complex Systems 9 (1995) 47–72

18. Bäck, T., Schwefel, H.P.: Evolution strategies I: Variants and their computational
implementation. In Winter, et al., eds.: Genetic Algorithms in Engineering and
Computer Science. John Wiley and Sons, Chichester (1995) 111–126

19. Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In Banzhaf, W.,
et al., eds.: Proceedings of the Genetic and Evolutionary Computation Conference
GECCO-99, San Francisco, CA, Morgan Kaufmann (1999) 258–265

20. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, MI (1975)

21. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In Glover, F.,
Kochenberger, G., eds.: Handbook of Metaheuristics, Norwell, MA, Kluwer Aca-
demic Publishers (2002) 321–353

22. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent
Computation Program, California Institute of Technology, Pasadena, CA (1989)

23. Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm pa-
rameters. In Banzhaf, W., Reeves, C., eds.: Foundations of Genetic Algorithms 5
(FOGA’98), Amsterdam, Morgan Kaufmann, San Mateo CA, 1999 (1998) 265–286


