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ABSTRACT
Over the last 10 years, many efforts

have been made to design a competent
genetic algorithm. This paper revisits
and extends the latest of such efforts—
the linkage learning genetic algorithm.
Specifically, it introduces an efficient
mechanism for representing the non-
coding material. Recent investigations
suggest that this new method is crucial
for solving a large class of hard opti-
mization problems.

1 Introduction
The simple genetic algorithm (SGA) has been applied suc-
cessfully in a variety of applications, including medical, fi-
nancial, and all kinds of engineering problems. Its power
comes from its ability to combine good pieces (building
blocks) from different solutions and assemble them into a sin-
gle super solution. But despite their success, there are still
problems whose solution can be constructed by the juxtapo-
sition of building blocks, and yet the SGA fails. The reason
behind this failure is well understood and is due to the so-
calledlinkage problem.

Before applying a genetic algorithm to a given problem, a
solution to the problem has to be encoded into a chromosome
structure. There are many ways in which this can be done, and
some encodings are better than others. The general guideline
is to try to put together in the chromosome features of the
problem that are somehow spatially or physically related.
These smart encodings are probably the main reason why
genetic algorithms have had so much success in a variety of

applications. By putting together in the chromosome things
that are related, the GA user is hopefully seeding the GA with
a good encoding to start with (good linkage information). If
the encoding is indeed good, that is, if things that are related
are close together in the chromosome, then most likely the
GA will perform well. On the other hand, if things that
are related are encoded far away from each other, then most
likely the GA will perform poorly. The dependence of GA’s
performance on an appropriate encoding is a big obstacle to
the GA’s robustness, especially because in most problems
there is not enough knowledge of what might be a good
encoding.

Early on, Holland (1975) observed that the GA gives pref-
erence to the building blocks (BBs) whose genes are close
together—tightly linked genes. However, he also noted that
the genes that constitute a BB could be far away from each
other—loosely linked genes. Holland suggested that these
widely separated genes could come closer and closer by means
of a reordering operator called inversion. His idea was to let
the GA evolve a good ordering of the genes at the same that
it evolves a good solution. Unfortunately, subsequent work
has shown that inversion is not fast enough and eventually
the population converges before inversion has time to reorder
the genes (Goldberg & Bridges, 1990). Following Holland’s
work, Goldberg realized that tight linkage is essential for hav-
ing good GA performance. With this in mind, he initiated
the research in messy GAs (Goldberg, Korb, & Deb, 1989)
(Goldberg et al., 1993), which in turn have spawned other
GAs that pay serious attention to linkage learning (Kargupta,
1996; Harik, 1997). The goal is to design a GA that can
solve problems of bounded difficulty quickly, reliably, and
accurately—a competent GA. Designing such an algorithm
has been a difficult and challenging task, and although a lot
has been achieved, there is still some progress to be made.



This paper extends the latest of these research efforts, the
linkage learning genetic algorithm (Harik, 1997), with a tech-
nique that seems promising for solving a large class of hard
optimization problems.

The next two sections provide background material needed
to understand this paper. Section 2 explains the limitations of
SGAs and section 3 reviews the linkage learning genetic al-
gorithm (LLGA). Then we describe a technique that doesn’t
change the behavior of the LLGA, but makes it computation-
ally tractable for problems that require a large number of non-
coding genes (more on this later). Finally, section 5 presents
an empirical study of the time complexity of the LLGA on
problems with exponentially scaled building blocks.

2 The limitations of SGAs
Genetic algorithms are successful when they can propagate
building blocks from generation to generation and combine
them into a single solution. Recall that a building block is
an association of genes (bits in a binary coded GA) that as a
whole give a high contribution to the fitness of an individual.
A building block is atomic in the sense that we can’t expect
the GA to discover it by combining sub-parts of it. BBs
are something that have to be discovered as a whole and be
propagated as unbreakable units. Unfortunately the simple
GA can only do so when the genes that constitute a BB are
located near each other.

Within the SGA, each gene is coded at a fixed position in
the chromosome. If the genes that constitute a BB are located
near each other, the SGA has no trouble propagating it. After
all, Holland’s schema theory (Holland, 1975) says that short,
highly fit similarities will tend to be propagated to subsequent
generations. But what if the BB is not short? What if the
BB is spread out along the chromosome? The answer is:
SGAs fail because the BBs from the different individuals
cannot be combined (mixed) in a reasonable amount of time.
Thierens and Goldberg (1993) showed that the time needed to
solve such problems grows exponentially as the problem size
increases.

Ideally the BBs would be coded so that its genes are close
together in the chromosome. But which genes constitute
a BB is unknown beforehand. By using a fixed encoding,
SGAs are not able to evolve a good ordering of the genes and
their performance become dependent of whether the initial
encoding is good or bad. This is a limitation and a severe
obstacle to the GA’s robustness.

2.1 Test problems
In order to test new GA mechanisms, it is useful to create ar-
tificial problems with a crisp definition of building blocks—
problems of bounded difficulty. These problems are consti-
tuted by a number of non-overlapping building blocks of a
maximum sizek. The overall fitness function is simply the
sum of the fitnesses of the individual building blocks. These
artificially constructed problems are often studied by GA re-
searchers with the hope that they bound the difficulty of a

large class of real-world problems. Bounded difficult prob-
lems can be divided into subclasses:

• Problems with uniformly scaled building blocks.

• Problems with exponentially scaled building blocks.

• A mixture of the above two types.

As the name suggests, uniformly scaled BBs are BBs that give
the same contribution to the fitness function. Exponentially
scaled means that the fitness of each BB is scaled by some
constant power. Some can argue that these types of problems
are not representative of the problems encountered in real
world applications. This is partially true and it is very
unlikely that a real world problem has such crisp definitions.
Nonetheless, we argue that most problems have some kind of
BB-structure. After all, if problems had no structure at all,
then a genetic algorithm would be no better than a random
search method. The success that GAs have had in various
applications supports the hypothesis that problems do have a
BB-like structure, possibly with some degree of interaction
among BBs.

Our first goal is to design a GA that can efficiently solve
problems with no interactions among BBs. Once we have
such a GA, the next step will be to study the effects of
having interactions among BBs. This last topic is sometimes
called crosstalk. Acompetent GAshould be able to solve
any of these problems quickly, reliably, and accurately. Such
a GA doesn’t fully exist yet, but we are closer than ever.
Specifically, the linkage learning genetic algorithm (Harik,
1997) excels in problems with exponentially scaled BBs, but
it is not as strong when the BBs are uniformly scaled. The
next section reviews this algorithm.

3 The linkage learning GA
This section gives a brief overview of the mechanics and
operation of the linkage learning genetic algorithm (LLGA).
For a more detailed description and analysis you should refer
to Harik’s dissertation (Harik, 1997).

On problems with exponentially scaled building blocks,
the LLGA autonomously rearranges the genes in the chro-
mosome so that the genes that are related come closer in the
chromosome—become tight. Once the linkage is tight, the
LLGA has no trouble propagating the BBs. On these prob-
lems, the LLGA efficiently learns the linkage of each BB,
one after the other. It first learns the linkage of the most im-
portant BB, and once this is formed, it moves on to next most
important BB, and so on. It does so without ever losing di-
versity on the other genes due to a probabilistic expression
mechanism. The remainder of this section describes the rep-
resentation of the chromosome, the probabilistic expression
mechanism, and the crossover operator.

3.1 Representation
The LLGA represents each gene by a (locus,allele) pair. There
is no under-specification, but over-specification is always pre-



sent. Every gene has always both allele values represented
in the chromosome. One of them is expressed and sent to
the fitness function according to a probabilistic scheme. Hav-
ing the complement allele for every gene ensures that diver-
sity is never lost. In addition, a chromosome also contains
non-coding genes (sometimes called introns in the evolution-
ary computation community). These genes give no contri-
bution to the fitness function, and their purpose is to facil-
itate the propagation of BBs and the formation of linkage.
Other researchers have also investigated the effects of includ-
ing non-coding material in the chromosome structures (Lev-
enick, 1991; Levenick, 1995; Wu & Lindsay, 1995). These
studies are motivated by the existence of non-coding DNA in
biological systems. For example, all living creatures contain
large amounts of non-coding DNA. Specifically, about 97%
of the human DNA is non-coding.

It is convenient to visualize the chromosome as a circular
list of genes. Figure 1 gives an example of such a chromo-
some. The example is for a 3-bit problem. Genes 1, 2, and
3 are the coding genes. Genes 4 and 5 are non-coding genes.
Each chromosome has an interpretation point. Starting from
this point, the genes are expressed by traversing the chromo-
some circle in a clockwise manner and recording the first oc-
currence of each gene. In the example, we would get (3,1)
(2,0) (1,1). These 3 genes would be sent to the fitness func-
tion. Genes number 4 and 5 are not sent to the fitness function
because they are non-coding. Note that for every gene, there
is always at least one copy with the complement allele. Harik
named this expression mechanism as probabilistic expression
(PE) because each chromosome can express a set of differ-
ent solutions depending on the location of the interpretation
point. Harik extended his concept of PE and created an ex-
tended probabilistic expression (EPE-n) mechanism. In this
general scheme, each gene has 1 copy of the expressed allele
and at mostn copies of the unexpressed allele (Harik, 1997).
Throughout this paper we use the EPE-2 mechanism, 1 copy
of the expressed allele and at most 2 copies of the unexpressed
allele. Harik (1997) has shown that this later scheme allows
for effective linkage learning to occur. Next, we illustrate the
crossover operator of the LLGA.

3.2 Crossover
The crossover operator works as follows. First, two chro-
mosomes are randomly chosen from the population. One is
named the recipient and the other is named the donor. A seg-
ment of the donor’s chromosome is chosen randomly and is
injected at a randomly chosen point (the grafting point) of the
recipient. Then, the recipient chromosome is traversed in a
clockwise manner and extra genes are deleted so that the re-
sulting chromosome is a legal EPE-2 chromosome. Figure 2
illustrates the 3 steps of the crossover operator. In order to
produce 2 offspring, the parent chromosomes exchange their
roles of donor and recipient. When the selection rate is prop-
erly chosen, this crossover operator brings the genes that con-
stitute a BB closer together. Details of why this happens are
explained in Harik’s dissertation as well as in (Harik & Gold-

berg, 1996). Once the linkage is tight, the BB has a very low
chance of being disrupted and it is easily propagated to the
other population members.

The generation loop of the LLGA is similar to that of
the SGA. Selection and crossover are applied generation after
generation. Unlike the messy GA, there’s no explicit primor-
dial and juxtapositional phases. Harik showed that the LLGA
efficiently solve a large class of hard problems that are diffi-
cult for the SGA—problems with exponentially scaled BBs.
However, he also recognized that the LLGA didn’t perform
as well on uniformly scaled problems as it did on exponen-
tially scaled ones. To attack this problem, a new interpreta-
tion scheme has been recently investigated (Wang, 1997). The
main idea of this new interpretation scheme is to let the build-
ing blocks form in different parts of the chromosome circle.
Preliminary results suggest that these kinds of problems can
be solved efficiently, but in order to do so, the LLGA seems to
require a very large number of non-coding genes. This num-
ber appears to grow exponentially with the problem size. The
next section introduces a technique that is capable of dealing
with this exponential growth.
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Figure 1 Example of a chromosome in the LLGA. Genes
1, 2, 3 are coding genes. Genes 4 and 5 are non-coding.
Starting from the interpretation point and traversing the
chromosome in a clockwise direction, the chromosome
would be expressed as (3,1) (2,0) (1,1). Note the existence
of additional genes with the complement alleles.
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Figure 2 The crossover operator of the LLGA. Step 1: Pick a grafting point in the recipient, and pick a random
segment from the donor. Step 2: Inject the random segment at the grafting point of the recipient. Step 3: Traverse the
recipient and delete extra genes in order to make a legal EPE-2 chromosome. (Note: the choice of the cross and grafting
points is not totally random. In the actual implementation, we make sure that they always fall in a non-coding gene. In
this example, genes 4 and 5 are the non-coding genes).



4 Simulating the LLGA with com-
pressed introns

To cope with the exponential growth of non-coding mate-
rial, we introduce a technique that compresses the non-coding
genes, thus making it tractable from a computational perspec-
tive. The idea is simple. Instead of keeping the non-coding
genes individually, we just keep the size of the non-coding
segment (the number of consecutive non-coding genes) be-
tween each pair of coding genes. The storage requirement
becomesO(number of coding genes). The example in fig-
ure 3 illustrates the compressed representation.

With the compressed representation, the identity of the
non-coding genes is lost. But this shouldn’t be a problem
because these genes give no contribution to the fitness func-
tion. Their purpose in the chromosome is to provide spacings
to help the formation of linkage. This representation is just
a trick to be able to cope with problems that require a large
number of non-coding genes. But we also need to be able to
simulate the LLGA’s crossover operator as if it had the dis-
crete coding. The expression mechanism remains the same,
but the deletion of the extra non-coding genes needs to be sim-

ulated. An empirical analysis of the LLGA shows that very
few genes are deleted from the grafted material. This suggests
the implementation of the following deletion scheme:

1. Letn be the number of non-coding genes in the grafted
material.

2. Don’t delete any genes from the grafted material.

3. Deleten non-coding genes uniformly from the rest of
the chromosome.

Experiments with the compressed representation and the new
deletion procedure were performed. The modified version
mimics the original LLGA. Figure 4 is a replication of the 19
exponentially scaled BB problem that is reported in Harik’s
dissertation (pp 89-90). Figure 5 shows the exact same prob-
lem being solved with the compressed representation. The
graphs show the evolution of convergence and linkage of each
BB. The linkage measure was defined by Harik (1997). It is a
numerical value that indicates how tight a BB is. The tighter
the BB, the closer the linkage is to 1.

Interpretation Point

(3,0)
(4,0)

(1,0)

(2,1)

(7,1)

(6,0)

(4,1)

(3,1)

(1,1)

(5,0)
(8,0)

(2,0)(8,1)
(6,0)

(4,1)

(7,0)

(3,1)

(8,1)

(1,1)

(6,1)
(5,1)

(5,0)

Interpretation Point

(3,0)

(2,1)

(3,1)

(1,1)(2,0)

(3,1)

(1,1)

(1,0)

Representation
Compressed

2
1

0

3

0
2

5

1

Figure 3 Discrete (left) and compressed (right) representation of non-coding genes. In this example, genes 1, 2, 3 are
coding genes. Genes 4, 5, 6, 7, 8 are non-coding and are shown in grey for easy visualization.
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Figure 4 The LLGA with discrete representation of introns. The left graph plot the convergence of each BB versus
generation. The right graph plot the evolution of linkage for each BB. Each graph has 19 lines corresponding to the 19
BBs of the problem. Each BB is a 4-bit trap function with deceptive-to-optimal ratio of 0.6. The number of introns is
150, the population size is 1000, and tournament selection of size 4 is used.
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Figure 5 The LLGA with compressed representation of introns. The parameters used are exactly the same as the ones
described in the caption of figure 4.



5 Time complexity of the LLGA on
exponentially scaled problems.

This section presents an empirical study of the time complex-
ity of the LLGA on exponentially scaled problems. All sim-
ulations in this section were performed with the compressed
representation of introns. We conduct experiments on prob-
lems with 20, 50, 75, and 100 building blocks. Each consists
of a 4-bit trap function with a deceptive-to-optimal ratio of 0.8
(Deb & Goldberg, 1993). We record the minimum population
size needed to solve the problem to optimality at least 4 out of
5 independent runs. For all these problems, the LLGA takes
about the same time to solve each BB (around 17 generations
each). For 100 BBs, it takes near 1700 generations to solve
all of them. The pattern is the same as the one observed in fig-
ure 5. The LLGA learns the linkage of each BB, one after the
other. The table below shows the minimum population size,
the average number of generations, and the average number of
function evaluations needed to get the optimal solution in at
least 4 out of 5 independent runs. All experiments were per-
formed using tournament selection of size 4. For the different
problem lengths, we increase the number of introns linearly.
The numbers were 150, 375, 562, and 750 respectively.

Prob. length Pop. size Generations Func. Eval.

80 300 343 102,900
200 400 876 350,400
300 450 1289 580,050
400 550 1722 947,100

The number of generations needed to solve a larger prob-
lem increases linearly, but the population size increases very
slowly. Figure 6 plots the number of function evaluations
needed to solve the problem to optimality for different prob-
lem lengths. Taking the logarithm of the coordinates of the
endpoints, we observe that the curve has a slope of approx-
imately 1.4, which indicates that the time complexity of the
LLGA is almost linear for exponentially scaled problems. It is
clearly sub-quadratic. For these type of problems the LLGA
has a clear advantage over the SGA, even when the SGA
has good linkage information. The SGA has trouble with
these problems because genetic drift occurs on the less salient
BBs (Thierens, Goldberg, & Pereira, 1998). On the contrary,
the probabilistic expression mechanism keeps diversity alive
and therefore seems to eliminate the drift problem. The ini-
tial supply of BBs dominates the population sizing. Correct
decision-making is secondary since there’s almost no noise
coming from the other partitions (Goldberg, Deb, & Clark,
1992), (Harik et al., 1997). The GA can correctly decide be-
tween two individuals based on the outcome of the competi-
tion in one BB alone.

100000

1e+06

80 200 300 400

F
un

ct
io

n 
ev

al
ua

tio
ns

Problem length

Figure 6 Number of function evaluations needed to solve
the problem to optimality at least 4 out of 5 runs.

6 Conclusions
This paper revisited the linkage-learning genetic algorithm
and showed that its time complexity is sub-quadratic for
exponentially scaled problems. Aside from that, this work
represents a small step towards a competent GA. The efficient
representation of the non-coding material is likely to be
crucial for the solution of uniformly scaled problems within
the linkage learning GA framework. Investigations in this
direction have already begun and will be reported soon.

For the past 20 years, many applications have had success
using SGA-like technology. But it is possible to do better.
Competent GAs are coming soon, and with them, hard
optimization problems will be able to enjoy success as well.
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