
An architecture for massive parallelization of the

compact genetic algorithm

Fernando G. Lobo, Cláudio F. Lima, and Hugo Mártires

ADEEC-FCT, Universidade do Algarve
Campus de Gambelas, 8000 Faro, Portugal.

{flobo,clima}@ualg.pt, hmartires@myrealbox.com

Abstract. This paper presents an architecture which is suitable for a
massive parallelization of the compact genetic algorithm. The approach
is scalable, has low synchronization costs, and is fault tolerant. The pa-
per argues that the benefits that can be obtained with the proposed
methodology is potentially higher than those obtained with traditional
parallel genetic algorithms.

1 Introduction

With a traditional parallel genetic algorithm (GA) implementation, population
members need to be sent over a computer network, and that imposes a limit
on how fast they can be [1]. In this paper, we investigate the parallelization of
the compact genetic algorithm (cGA) [2], and take advantage of its compact
representation of the population do develop a parallelization scheme which sig-
nificantly reduces the communication overhead.

The cGA uses a probability vector as a model to represent the population.
The vector can be stored with `× log

2
(N + 1) bits (` is the chromosome length,

N is the population size), a different order of magnitude than the ` × N bits
needed to represent a population in a regular GA. Since communication costs can
be drastically reduced, it makes sense to clone the probability vector to several
computers, and let each computer work independently on solving the problem
by running a separate cGA. Then, the different probability vectors need to be
consolidated (or mixed) once in a while.

2 Massive parallelization of the compact GA

We have developed an asynchronous parallelization scheme which consists of a
manager processor, and an arbitrary number of worker processors. Initially, the
manager starts with a probability vector with 0.5 in all positions, just like in a
regular cGA. After that, it sends the vector to all workers who are willing to
contribute with CPU time.

Each worker processor runs a cGA on its own based on a local copy of the
probability vector. Workers do their job independently and only interrupt the



2

manager once in a while, after a predefined number of m fitness function evalu-
ations have elapsed.

During the interruption period, a worker sends the accumulated results of
the last m function evaluations as a vector of probability fluxes with respect to
the original probability vector. Subsequently, the manager adds the probability
fluxes to its own probability vector, and resends the resulting vector back to the
worker. Meanwhile, other worker processors can continue doing their job non-
stop, even though some of them are working with a slightly outdated vector.

Each worker processor can start and finish at any given point in time making
the whole system fault tolerant. When a worker starts, it receives a copy of the
manager’s probability vector, which already contains the accumulated results of
the other cGA workers. On the other hand, when a worker quits, we simply loose
a maximum of m function evaluations, which is not a big problem.

We have conducted computer simulations to validate the proposed approach
and observed a linear speedup with a growing number of processors (see Fig-
ure 1). Additional details of the simulations and a longer description of this work
can be found elsewhere [3].

1 2 4 8 16 32 64 128 256 512 1024
10

3

10
4

10
5

10
6

10
7

number of processors

fu
nc

tio
n 

ev
al

ua
tio

ns
 p

er
 p

ro
ce

ss
or

m = 8
m = 80
m = 800
m = 8000
m = 80000

1 2 4 8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

number of processors

co
m

m
un

ic
at

io
n 

st
ep

s 
pe

r 
pr

oc
es

so
r

m = 8
m = 80
m = 800
m = 8000
m = 80000

Fig. 1. On the left, we see the average number of function evaluations per processor.
On the right, we see the average number of communication steps per processor.

Acknowledgements This work was sponsored by FCT/MCES under grants
POSI/SRI/42065/2001 and POCTI/MGS/37970/2001.

References

1. Cantú-Paz, E.: Efficient and accurate parallel genetic algorithms. Kluwer Academic
Publishers, Boston, MA (2000)

2. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation 3 (1999) 287–297

3. Lobo, F.G., Lima, C.F., Mártires, H.: An architecture for massive parallelization of
the compact genetic algorithm. arXiv Report cs.NE/0402049 (2004) (Available at
http://arxiv.org/abs/cs.NE/0402049).


