
A parameter-less genetic algorithm

Georges R. Harik
950 High School Way
Mountain View, CA
gharik@earthlink.net

Fernando G. Lobo
Dept. Environmental Engineering

Universidade Nova de Lisboa
2825 Monte da Caparica, Portugal

fgl@mail.fct.unl.pt

Abstract

From the user’s point of view, setting the pa-
rameters of a genetic algorithm (GA) is far from
a trivial task. Moreover, the user is typically
not interested in population sizes, crossover
probabilities, selection rates, and other GA
technicalities. He is just interested in solving
a problem, and what he would really like to do,
is to hand-in the problem to a blackbox algo-
rithm, and simply press a start button. This
paper explores the development of a GA that
fulfills this requirement. It has no parameters
whatsoever. The development of the algorithm
takes into account several aspects of the theory
of GAs, including previous research work on
population sizing, the schema theorem, build-
ing block mixing, and genetic drift.

1 INTRODUCTION

When Holland (1975) proposed genetic algorithms, he
envisioned them as methods that were going to be ef-
ficient, easy to use, and applicable to a wide range of
problems. But one thing that stands out from the cur-
rent literature is that genetic algorithms seem to require
quite a bit of expertise in order to make them work well
for a particular application. The expertise is needed be-
cause users are generally clueless on how to decide among
the various codings and operators, as well as on deciding
on a good set of parameter values for the GA. In the end,
instead of being a robust and an easy-to-use method, the
genetic algorithm turns out to be a method that needs a
lot of tuning and parameter fiddling. This state of affairs
is a kind of a paradox and contradicts Holland’s original
goals.

The decisions that a user must make before applying
a GA can be grouped in two categories. The first, is
the choice of an appropriate coding and operators. The
second, is the choice of appropriate parameter settings.

This paper addresses the second category. Not that the
first one is unimportant or irrelevant. It is indeed a very
important topic that has been subject of extensive re-
search. Specifically, one of the motivations of the work
in linkage learning GAs, is to relieve the user from having
to come up with special purpose codings and operators.
Linkage learning GAs are able to detect important sim-
ilarities (building blocks) in the encoding, and are able
to come up with “smart” operators that are able to effi-
ciently process building blocks (Harik, 1997). The work
contained herein has a similar flavor regarding the sec-
ond category of choices. The outcome is an algorithm
that relieves the user from having to set the parameters
of the GA. The resulting parameter-less GA makes life
easier to users and goes one step closer in the direction
of an algorithm that is robust, efficient, and simple to
use.

The remainder of the paper is organized as follows. The
next section reviews work related to the topic of param-
eter setting in GAs. Section 3 describes the parameter-
less genetic algorithm and is the core of this paper.
Section 4 presents computer simulations showing the
parameter-less GA in action. Finally, the paper ends
by suggesting a couple of extensions to this work.

2 RELATED WORK

This section reviews the most important research efforts
for understanding the relationship among the various pa-
rameters, how they affect performance, and attempts to
eliminate some of them from the GA. There is a substan-
tial amount of research in these areas and in this paper
we can only briefly mention a small part of it. For a
better exposition, we divide the various works in three
classes: empirical studies, facetwise theoretical studies,
and parameter adaptation.



2.1 EMPIRICAL STUDIES

One of the first systematic studies to understand the
relationship among the GA parameters, was conducted
by De Jong (1975). He tried various combinations of
parameters on a set of five functions. Based on those
experiments, De Jong concluded that for his test func-
tions, the following set of parameters gave good perfor-
mance: population size of 50-100, crossover probabil-
ity of 0.6, and mutation probability of 0.001. After De
Jong published his dissertation, these parameter settings
have been adopted by many researchers and practition-
ers. They have been used so often, that they are some-
times referred to as “standard” settings. De Jong’s work
was very important as it gave practical guidelines for
subsequent GA applications and research. The down-
side is that many people have taken his results too seri-
ously and have blindly applied them to solve all kind of
problems.

2.2 FACETWISE THEORETICAL STUDIES

Because the dynamics of the GA are so complex, it is
hard to study the effect of all the parameters simultane-
ously. Therefore, many research studies have analyzed
the effect of one or two parameters in isolation, and ig-
nored the others. These facetwise studies have proven to
be very useful to get insights about the GA dynamics.
Among the most relevant ones, are the works on selection
alone (Goldberg & Deb, 1991), mutation (Mühlenbein,
1992; Bäck, 1993), population sizing (Goldberg, Deb,
& Clark, 1992), (Harik et al., 1997), and control maps
(Goldberg, Deb, & Thierens, 1993; Thierens & Gold-
berg, 1993). The work on population sizing is of special
relevance, resulting in models that clearly show that set-
ting the population size in the range 50-100 for all prob-
lems is a huge mistake. The work on control maps is
also key for the development of the parameter-less GA.
A control map gives a region of the parameter space
where the GA is expected to work well. We will talk
more about these issues later in the paper.

2.3 PARAMETER ADAPTATION

Parameter adaptation has to do with techniques that
change or adapt the parameter values as the search pro-
gresses. This topic has been investigated since the early
days of the evolutionary computation (EC) field. The
techniques used include both centralized and decentral-
ized control methods. Centralized methods change the
parameter values based on a central learning rule (Cav-
icchio, 1970; Davis, 1989; Smith & Smuda, 1995). De-
centralized methods have no central control and have
been used more often in a GA-related class of algorithms
called Evolution Strategies (ES) (Bäck & Schwefel, 1995).
The idea behind decentralized methods is to encode the

parameters (typically crossover and mutation rates) in
the individual strings themselves. As a consequence, the
parameters are also subject to the rules of evolution. Yet
another approach for parameter adaptation is the work
on Meta-GAs. Here, the idea is to run a higher level GA
that searches for a good set of parameters for a lower
level GA. The higher level GA, or Meta-GA, runs on a
population whose individuals are encodings of parameter
settings, while the lower level GA is a regular GA that
uses the settings found by the higher-level GA (Mercer
& Sampson, 1978; Grefenstette, 1986).

Most of the work in parameter adaptation have focused
on adapting mutation and crossover rates, but there
has been very little work on adaptive population sizing
schemes. The work of Smith and Smuda (1995) is an ex-
ception. We will address it in more detail in section 3.2.

3 DEVELOPMENT OF A
PARAMETER-LESS GA

In the previous sections we have explained the motiva-
tion for removing the parameters of the genetic algo-
rithm. Now we are ready to present you the parameter-
less GA. Our work ignores mutation for the time being.
This doesn’t mean that mutation is unimportant. There
has been extensive debates in the evolutionary compu-
tation community regarding the usefulness of crossover
versus mutation and vice-versa. We recognize that mu-
tation can be quite helpful in certain situations and that
it shouldn’t be discarded lightly. But in this work we ig-
nore it for the sake of simplicity. We will revisit the topic
on mutation at the end of the paper. For now, you have
to be satisfied with a parameter-less crossover-based GA.

There are three parameters that affect the performance
of a crossover-based GA: population size, selection rate,
and crossover probability. In the remainder of the section
we explain how we can eliminate these parameters. The
exposition proceeds in two steps. First, we get rid of
selection rate and crossover probability. Next, we get
rid of population sizing.

3.1 GETTING RID OF SELECTION RATE
AND CROSSOVER PROBABILITY

The selection rate and crossover probability can be elim-
inated in a single shot if one has a proper understand-
ing of the roles of these two parameters. The selection
rate s allows the user to control the amount of bias to-
wards better individuals. The crossover probability pc

allows the user to control the amount of recombination
or mixing. Together the two parameters work for the
same purpose, which is to ensure that building blocks
grow from generation to generation. A closer look at the
schema theorem reveals that the survival probability of



a schema can be made to increase by either raising the
selection rate or lowering the crossover probability. Pre-
vious research (Goldberg, Deb, & Thierens, 1993) have
shown that the GA is quite robust regarding the settings
of these two parameters. Goldberg, Deb, and Thierens
observed that when the building blocks are compact1,
the GA works well for a wide range of combinations of
pc and s. The important thing is to respect the schema
theorem and not fall in the extreme cases of very low
and very high selection pressures. At very low selection
pressures the GA is not able to discriminate between
the good and bad individuals. At very high selection
pressures the GA only pays attention to the very best
individuals, resulting in an immediate loss of diversity
and little recombination to be done. The two extreme
cases are easily excluded by setting the selection rate to
a value that is neither too low nor too high. Apart from
that, the GA just needs to obey the schema theorem by
making sure that the growth ratio of building blocks is
greater than 1. Let φ(H, t) be the effect of the selection
operator on schema H at generation t, and ε(H, t) be
the disruption factor on schema H due to the crossover
operator. Then the overall net growth ratio on schema
H at generation t is given by:

φ(H, t)[1− ε(H, t)]

The above expression is nothing but a simplification of
the schema theorem. Under the conservative hypothesis
that a schema is destroyed during the crossover opera-
tor, and substituting s and pc in the formula above, we
obtain that the growth ratio of a schema is given by the
expression:

s(1− pc)

Thus, setting s = 4 and pc = 0.5, gives a net growth fac-
tor of 2, and ensures that the necessary building blocks
will grow. Whether they will be able to mix in a single
individual or not is now a matter of having an adequate
population size. If the building blocks are compact, the
population sizing requirements will be quite reasonable
(Goldberg, Deb, & Clark, 1992), (Harik et al., 1997). If
they are not compact, then, unless the GA is able to
learn linkage on the fly, the population sizing require-
ments will be extremely large (Thierens & Goldberg,
1993). In either case, we can get rid of selection rate
and crossover probability by setting s = 4 and pc = 0.5
for all problems.

1A building blocks is compact when its genes are located
close to each other in the chromosome string

3.2 GETTING RID OF POPULATION
SIZING

The population size is a critical parameter in a GA. Too
small and the GA will converge to sub-optimal solutions.
Too large and the GA will spend unnecessary computa-
tional resources. Theoretical models have addressed the
topic of population sizing in GAs (Goldberg, Deb, &
Clark, 1992), (Harik et al., 1997). The essence of those
models is the recognition that the GA can make mistakes
when deciding between a building block and one of its
competitors. By increasing the size of the population,
the GA can get a better sampling of building blocks and
reduce the error in decision-making. In simple words, the
models dictate that the population size has to be large
enough so that the GA can correctly decide, in a statisti-
cal sense, between a building block and its competitors.
The result is an equation that says that the population
size should be proportional to the problem length, and
to building blocks’s signal-to-noise ratios. Although ac-
curate, those models are difficult to apply in practice
because they rely on several assumptions that may not
hold for real-world problems. For example, in order to
apply the population sizing equation, the user needs to
know or estimate, the maximum level of deception in a
problem, and the selective advantage (signal) of a build-
ing block over its most tough competitor. This infor-
mation is usually unknown and is also hard to estimate.
Moreover, the equation is only accurate when there is
a proper mixing of building blocks. Due to these rea-
sons, it becomes difficult to apply the equation in prac-
tice. If it was easy to apply it, then the whole process
could be automated in the algorithm itself. Smith and
Smuda (1995) did such an attempt. In order to that, the
authors required the user to specify a desired accuracy
level for selection loss (something equivalent to the build-
ing block’s signal in Goldberg et al.’s equation). Then,
they suggested an algorithm that does online estimates
of schema fitness variances, and sizes the population so
that the selection loss approximates the user’s specified
target loss. However, the resulting algorithm had a few
limitations. First, it is hard to relate the user’s specified
selection target loss with the actual accuracy of the GA
in solving the problem. Second, the estimation of schema
fitness variances is very noisy because the GA samples
many partitions simultaneously. Third, the population
sizing theory assumes that the building block mixing is
going to be nearly perfect, which may not occur in prac-
tice. Nonetheless, the work of Smith and Smuda is a
significant one, especially because there has been very
few studies that have attempted to automatically adapt
the population size.

So far we have been looking at the difficulties that exist
in order to apply the population sizing theory in practice.
Let’s step back for a moment and observe what a user



typically does to solve a problem with a GA. Most likely,
he starts by trying a small population size. Then, he
might try a larger one. In the end, perhaps he has tried
5 to 10 different population sizes to have a feeling of how
the problem responds to different population settings.
This situation is certainly familiar to many GA users
around the world, ourselves included. But why should
every user need to do this kind of experimentation for
every single problem? Why not have the algorithm do
the experimentation automatically? That’s more or less
what we are about to propose here. Next, we present two
approaches for getting rid of population sizing. The first
is simpler, but has a major drawback. The second comes
as a logical consequence of the first one, and constitutes
an effective mechanism for eliminating the population
sizing parameter once and for all.

3.2.1 First attempt: double the population size
at convergence.

This approach consists of iteratively running the GA
with different population sizes. Starting with a small
population size, say 4, let the GA run until it converges.2

Following that, the GA fires a new population, twice as
large as the previous one, and again let it converge. And
the process repeats ad eternum. Each time the popula-
tion converges, the population size is doubled. The GA
works forever and only stops if the computer runs out
of memory, or the user is happy with the solution qual-
ity, and presses a stop button. This technique, although
simplistic, is powerful. It roughly mimics what the user
typically does in an ad-hoc way, except this time, the GA
is doing it in a systematic way. By doubling the popu-
lation size each time the population converges, there is
a guarantee that the time needed by the parameter-less
GA in order to reach a certain solution quality, will be
within a factor of 2 of the time needed by a GA that
starts with an optimal population size. Moreover, if the
user doesn’t want to wait that long, and presses the stop
button early on the run, the parameter-less GA does
probably better than a GA with an optimal population
size.

This technique has a drawback that is not immediately
obvious. The occurrence of genetic drift may lead to
long convergence times. Genetic drift occurs when there
is not enough pressure to discriminate between two or
more distinct solutions. The simplest way to illustrate
it is with a one-bit problem where both individual 0 and
individual 1 have the same fitness. Consider a popula-
tion of N individuals, half of them are like individual 0,
and half are like individual 1. When a GA runs on such a
population, there’s no selection pressure to discriminate

2Convergence means that all the individuals have the same
genotype. Notice that this eventually happens because mu-
tation is turned off.

between the two different solutions, and eventually, the
population will converge to all zeros or all ones. But the
whole process looks like a random walk, and the waiting
times until convergence can be quite long. This roaming
around of the population is called drift. The same pro-
cess can occur in our proposed parameter-less GA. The
consequences are that the waiting times before the pop-
ulation size is doubled can be quite long and unaccept-
able. One solution to avoid these long waiting times is to
detect if a population is drifting, and in the affirmative
case, fire a new population twice as large, even before the
old one converges. However, drift detection is a difficult
task. One could think of stopping the population from
running if the fitness variance of the population members
falls within a certain threshold ε, but such an approach
introduces two problems. First, there’s the introduction
of a parameter, which goes against the whole philosophy
of this work. Second, many real-world problems have
noisy fitness functions. On such problems, the threshold
ε might never be reached. Fortunately, there’s another
way to get around the drift problem, and without the
need of additional parameters.

3.2.2 Second attempt: establish a race among
multiple populations.

An alternative approach for tackling the drift problem,
consists of running multiple populations simultaneously.
The idea is to establish a race among populations of var-
ious sizes. The parameter-less GA gives an advantage
to the smaller populations by giving them more func-
tion evaluations. Consequently, the smaller populations
have a chance to converge faster than the larger ones.
That is, smaller populations get a head start at the be-
ginning, but if they start to drift too much, they will be
catched up by a larger population. When that happens,
the smaller populations are destroyed. Specifically, if at
any point in time, a larger population has an average
fitness greater than that of a smaller population, then
the parameter-less GA gets rid of the smaller population.
The rationale for doing this is as follows. If a larger pop-
ulation has a higher fitness than a smaller population,
then there is no point in continuing running the smaller
population, since it is very unlikely that the smaller one
will produce a fitter individual than the larger one. The
drift problem is partially eliminated because if a popu-
lation starts drifting, it will be catched up by a larger
population. The coordination of this array of popula-
tions seems complex, but can be easily implemented with
a counter as illustrated by table 1.

At each time step, a counter of base 4 is incremented, and
the position of the most significant digit that changed
during the increment operation is noted. That position
indicates which population should be ran. In the exam-
ple above, the algorithm initially runs population 1 for 4



Table 1: Mechanics of the parameter-less GA.

Counter Action
base 4

0 run 1 generation of population 1
1 run 1 generation of population 1
2 run 1 generation of population 1
3 run 1 generation of population 1

10 run 1 generation of population 2
11 run 1 generation of population 1
12 run 1 generation of population 1
13 run 1 generation of population 1
20 run 1 generation of population 2
21 run 1 generation of population 1
22 run 1 generation of population 1
23 run 1 generation of population 1
30 run 1 generation of population 2
31 run 1 generation of population 1
32 run 1 generation of population 1
33 run 1 generation of population 1

100 run 1 generation of population 3
101 run 1 generation of population 1

...
...

generations, then it runs population 2 for 1 generation,
then population 1 for 3 more generations, then popula-
tion 2 for 1 generation, and so on as illustrated in table 1.
Overall, population i is allowed to run 4 times more gen-
erations than population i+1. Just like in the description
of our first attempt, each new population that gets fired
is twice the size of the previous population. Taking into
account both the number of generations and the popu-
lation sizes, we observe that population i is allowed to
spend twice the number of function evaluations of pop-
ulation i + 1.

Eventually, a population converges (most likely popu-
lation 1). At that point the algorithm removes it, and
resets the counter. Likewise, if the average fitness of
a population is less than the average fitness of a larger
population, then the smaller population is removed, and
the counter is reset. After some time, the typical state
of the parameter-less GA might look like the one shown
in table 2. In the example, the parameter-less GA is
currently running with 3 different population sizes. The
smaller one has size 256 and is at generation 30. The
next population has size 512 and is only at generation 6.
The larger one has size 1024 and is still at generation 1.

Table 2: Typical state of parameter-less GA.

population population current average
index size generation fitness

1 256 30 17.6
2 512 6 11.8
3 1024 1 7.8

4 EXPERIMENTAL RESULTS

This section presents computer simulations on three
test problems, and compares the performance of the
parameter-less GA with a regular GA with “optimal”
parameter settings for those problems. Both GAs are
implemented as simple GAs. By simple GA, we mean
a GA that uses a fixed coding and non-adaptive oper-
ators. Our simple GA implementation is generational,
uses tournament selection without replacement, uniform
crossover, and no mutation. For each problem, 20 in-
dependent runs were performed in order to get results
with statistical significance. In order to compare the
parameter-less GA with the regular GA, we run both al-
gorithms until a specified target solution is achieved, and
record the number of fitness function evaluations needed
to do so.

The three test problems are carefully chosen to illustrate
specific aspects of the parameter-less GA. The first prob-
lem is the onemax problem, also known as the counting
ones problem. This is an easy problem for the GA, and
we can use the existing population sizing theory in order
to compare the parameter-less GA with a GA with “op-
timal” population size. The second problem, is the noisy
onemax problem. We use this problem to illustrate the
need of having multiple populations running simultane-
ously in order to overcome drift. The third problem is a
bounded deceptive problem where the user has no knowl-
edge about the location of the deceptive sub-problems or
building blocks. For such a problem, the simple GA is
unable to efficiently mix the building blocks, and thus
the existing population sizing theory does not hold.

4.1 ONEMAX

The onemax function simply returns the number of ones
of an individual string. For testing purposes, a string
length of 100 bits is used. The target solution is the
string with all ones. The parameters of the regular GA
are: tournament size 2, probability of crossover equal to
1, and population size of 100. These parameters were
chosen because they are nearly optimal for this prob-
lem under a crossover-based GA. The population size of
100 was chosen based on the population sizing equation
(Harik et al., 1997) shown below:



N =
−2k

√
πmσ2

BB

2d
ln α

The population size N depends on the building block
size k, the number of building blocks m, the building
block’s fitness variance σ2

BB , and the building block’s
fitness signal d. For a 100 bit onemax problem, these
values are k = 1, m = 100, σ2

BB = 0.25, and d = 1.
Plugging these values in the equation, we get:

N = −8.86 ln α

where α is the probability that the GA makes a mistake
on a building block. Thus, the GA is expected to cor-
rectly solve a proportion of 1−α of the building blocks.
In our case, we would like the GA to get the optimal
solution in all the 20 runs. Theoretical, this can only
be guaranteed if α = 0, which would imply an infinite
population size. For practical purposes, we use a pop-
ulation size of 100, which corresponds to a very small
error probability (≈ 0.00001).

Figure 1 compares the regular GA with the parameter-
less GA. The regular GA takes on average 2500 function
evaluations in order to reach an optimal solution, while
the parameter-less GA takes on average 7400 function
evaluations. As expected, the GA with optimal param-
eter settings can reach the optimal solution faster than
the parameter-less GA. But the parameter-less GA does
not bad at all. Without using any knowledge about the
problem, the parameter-less GA is able to reach the opti-
mal solution in not more than 3 times the time needed by
the optimal GA. The population sizing scheme is perhaps
responsible for a factor of 2. The rest is due to the se-
lection rate s = 4 and the crossover probability pc = 0.5
used by the parameter-less GA. On an easy problem such
as the onemax, a higher crossover rate and a less aggres-
sive selection scheme, would achieve a higher solution
quality faster. But this is a price that must be paid in
order to have robust settings. That is, to have param-
eter settings that work more or less well on both easy
and difficult problems. As an aside, notice that we are
not doing any clever tricks counting the number of func-
tion evaluations. We are simply counting them as the
product of population size by number of generations. In
a careful implementation, the parameter-less GA could
actually spend only half of that number simply by not re-
evaluating the population members that don’t undergo
crossover.

4.2 NOISY ONEMAX

Here we want to illustrate the need for having multiple
populations running simultaneously in the parameter-
less GA. To do so, we test it on a noisy onemax problem.

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

bu
ild

in
g 

bl
oc

ks

function evaluations

Figure 1: A 100-bit onemax problem. In this, as well as
in the other figures in this paper, both lines indicate the
best solution found so far by each algorithm averaged
over 20 runs. The solid line is for the regular GA. The
dashed line is for the parameter-less GA.

In this problem, the fitness f ′ of an individual is given
by:

f ′ = f + noise

where f is the fitness of the problem in the absence of
noise, and noise is a noise component. For practical pur-
poses, the noise component can be simulation by tossing
a Gaussian random variable with mean 0 and variance
σ2. We use a 100-bit string length, and a noise variance
σ2 = 1000. This value corresponds to a large amount
of noise. Miller (1997) studied the effects of noise in the
population sizing requirements of the GA, and extended
Harik et al.’s equation to account for it. The resulting
equation is:

N =
−2k

√
π
√

σ2
f + σ2

noise

2d
ln α

For the 100-bit onemax problem, the fitness variance
without noise is σ2

f = 25. For a noise level of σ2
noise =

1000, we obtain a population sizing of:

N = −56.7 ln α

For the same level of accuracy that was used before (α =
0.00001), we get a population size of 650. Figure 2 shows
a comparison of the regular GA with optimal parameter
settings (N = 650, s = 2, pc = 1) with the parameter-
less GA. The regular GA takes on average 96000 function
evaluations in order to discover an individual with 100
building blocks. To do the same thing, the parameter-
less GA takes on average 197000 function evaluations, a
factor of 2.



50

60

70

80

90

100

0 50000 100000 150000 200000 250000 300000

bu
ild

in
g 

bl
oc

ks

function evaluations

Figure 2: A 100-bit noisy onemax problem.

Tracing the parameter-less GA, we observed that the
smaller populations were not being ran until conver-
gence. Instead, they were often catched up by larger
populations. Due to the large amount of noise, there is
only a very tiny selection pressure, and the population
simply drifts. Notice that drift is not completely elimi-
nated. The populations still drift, but they don’t do it
too much because they are not ran until convergence.

4.3 BOUNDED DECEPTIVE

The last test case illustrates a problem that is known
to be difficult for a simple GA. The problem is the con-
catenation of 10 copies of a 4-bit trap function. A trap
function is a function of unitation u, the number of ones
in a 4-bit sub-string. It is defined as follows:

f(u) =
{

3− u, if u < 4;
4, if u = 4.

The overall fitness function is the sum of the 10 indepen-
dent sub-functions. Without previous knowledge about
the location of each of the 10 sub-functions or building
blocks, it is very hard for the simple GA to combine
building blocks from different individuals and assemble
them in a single individual. In order to do that, the sim-
ple GA needs to obey the schema theorem, and in addi-
tion, it requires a very large population size (Thierens &
Goldberg, 1993). For this case, the existing population
sizing models are unable to predict accurate population
sizes, because the assumption that the building blocks
mix well does not hold. Our desired target solution is
the string with all 10 building blocks solved correctly.
In order to obey the schema theorem, the regular GA
uses a selection rate of s = 4 and a crossover probability
pc = 0.5. The minimum population size needed in order
to solve all 20 runs to optimality was found empirically

5

6

7

8

9

10

0 1e+06 2e+06 3e+06 4e+06 5e+06

bu
ild

in
g 

bl
oc

ks

function evaluations

Figure 3: 10 copies of a 4-bit trap function.

to be 60000. Figure 3 compares the two GAs. The regu-
lar GA took on average 1.5 million function evaluations
to reach the target solution, and the parameter-less GA
took about the same number.

5 EXTENSIONS

A couple of extensions can be done on top of this work.
One is the integration of mutation. In many problems,
a mutation-based GA will outperform a crossover-based
GA. More important, many problems will benefit from
a combination of both. The question is how to combine
them in an efficient way. There is empirical and the-
oretical evidence in the GA community, that mutation
works best with small population sizes, while crossover
works best with large population sizes. It seems that
a crossover-based GA and a mutation-based GA need
totally different strategies. The question of how to in-
tegrate mutation with crossover is a difficult one, and is
surely an area that needs additional research.

Another extension to this work, is to experiment with
other kind of GAs. It is important to mention that the
parameter-less GA that we have just proposed is not
tied up to a specific implementation. It is valid for any
kind of crossover-based GA. Thus, it is possible to have
a parameter-less simple GA, a parameter-less linkage-
learning GA, and so on. In this paper, we restricted
ourselves to a parameter-less simple GA. That was done
on purpose in order to make the exposition clear. But we
have also conducted experiments with a parameter-less
linkage learning GA. The result is a very powerful algo-
rithm that not only relieves the user from having to set
the GA parameters, it also relieves the user from having
to come up with special purpose codings and operators.
Those results will be reported soon.



6 SUMMARY AND CONCLUSIONS

This paper presented a practical approach that elimi-
nates the need of parameters in a crossover-based GA.
We illustrated the operation and described how the
parameter-less GA can be implemented. The parameter-
less GA uses a crossover probability Pc = 0.5, and a
selection rate s = 4 in order to obey the schema theo-
rem, and not fall in the extreme cases of very high and
very low selection pressures. At first, fixing the selection
rate and the crossover probability for all problems, might
look like an approach similar to the one used by those
who adopt the so-called “standard” parameter settings.
But in this case, the parameter settings are backed up by
sound theoretical work, and constitute robust settings.
Of course, it is possible to obtain better performance in
some problems, by tweaking both s and pc. But with this
work, we are not interested in peak performance. What
we are really interested is in robustness and simplicity
of use. Regarding the population size, the parameter-
less GA tackles it by running multiple populations in
a cascade-like manner, and getting rid of the ones that
converge, and the ones that drift. The parameter-less
GA is a bit slower than a GA that starts with “opti-
mal” parameter settings, but the truth is that nobody
knows what are the “optimal” parameter settings for an
arbitrary real-world problem. The technique presented
here just requires the user to press a start button. The
algorithm runs forever, and does the the best that it can
until the user is happy with the solution quality, or has
waited long enough and decides to press a stop button.

Users of GA technology don’t have to be necessary GA
specialists in order to use them. To disseminate the us-
age of these methods, the algorithms have to be accurate,
reliable, efficient, and simple to use. Up to this date,
the issue on parameter settings has been very confusing
for users. The parameter-less GA removes a great part
of this confusion. It makes life easier to users, and we
strongly believe that it will contribute for more success-
ful applications of GAs. As far as theory is concerned,
the parameter-less GA is based on solid foundations, and
it helps to narrow the existing gap between GA theory
and GA practice.

References

Bäck, T. (1993). Optimal mutation rates in genetic search.
In Forrest, S. (Ed.), Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms (pp. 2–8).
San Mateo, CA: Morgan Kaufmann.

Bäck, T., & Schwefel, H.-P. (1995). Evolution strategies
I: Variants and their computational implementation.
In Winter, G., Périaux, J., Galán, M., & Cuesta, P.
(Eds.), Genetic Algorithms in Engineering and Com-
puter Science (Chapter 6, pp. 111–126). Chichester:
John Wiley and Sons.

Cavicchio, Jr., D. J. (1970). Adaptive search using sim-

ulated evolution. Unpublished doctoral dissertation,
University of Michigan, Ann Arbor, MI. (University
Microfilms No. 25-0199).

Davis, L. (1989). Adapting operator probabilities in ge-
netic algorithms. In Schaffer, J. D. (Ed.), Proceedings
of the Third International Conference on Genetic Al-
gorithms (pp. 61–69). San Mateo, CA: Morgan Kauf-
mann.

De Jong, K. A. (1975). An analysis of the behavior of a
class of genetic adaptive systems. Doctoral disserta-
tion, University of Michigan, Ann Arbor. (University
Microfilms No. 76-9381).

Goldberg, D. E., & Deb, K. (1991). A comparative analysis
of selection schemes used in genetic algorithms. Foun-
dations of Genetic Algorithms , 1 , 69–93. (Also TCGA
Report 90007).

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Genetic
algorithms, noise, and the sizing of populations. Com-
plex Systems, 6 , 333–362.

Goldberg, D. E., Deb, K., & Thierens, D. (1993). Toward a
better understanding of mixing in genetic algorithms.
Journal of the Society of Instrument and Control En-
gineers, 32 (1), 10–16.

Grefenstette, J. J. (1986). Optimization of control param-
eters for genetic algorithms. In Sage, A. P. (Ed.), IEEE
Transactions on Systems, Man, and Cybernetics, Vol-
ume SMC–16(1) (pp. 122–128). New York: IEEE.

Harik, G. R. (1997). Learning gene linkage to efficiently
solve problems of bounded difficulty using genetic algo-
rithms. Doctoral dissertation, University of Michigan,
Ann Arbor. Also IlliGAL Report No. 97005.

Harik, G. R., Cantú-Paz, E., Goldberg, D. E., & Miller,
B. L. (1997). The gambler’s ruin problem, genetic al-
gorithms, and the sizing of populations. In Bäck, T.
(Ed.), Proceedings of the Fourth International Con-
ference on Evolutionary Computation (pp. 7–12). New
York: IEEE Press.

Holland, J. H. (1975). Adaptation in natural and artificial
systems. Ann Arbor, MI: University of Michigan Press.

Mercer, R. E., & Sampson, J. R. (1978). Adaptive search
using a reproductive meta-plan. Kybernetes, 7 , 215–
228.

Miller, B. L. (1997). Noise, sampling, and efficient ge-
netic algorithms. Doctoral dissertation, Urbana. Also
IlliGAL Report No. 97001.

Mühlenbein, H. (1992). How genetic algorithms really
work: I. Mutation and Hillclimbing. Parallel Problem
Solving from Nature- PPSN II , 15–25.

Smith, R. E., & Smuda, E. (1995). Adaptively resizing
populations: Algorithm, analysis, and first results.
Complex Systems , 9 , 47–72.

Thierens, D., & Goldberg, D. E. (1993). Mixing in genetic
algorithms. In Forrest, S. (Ed.), Proceedings of the
Fifth International Conference on Genetic Algorithms
(pp. 38–45). San Mateo, CA: Morgan Kaufmann.


