
An overview of the parameter-less genetic algorithm

Fernando G. Lobo
ADEEC, FCT

Universidade do Algarve
Campus de Gambelas

8000-062 Faro, Portugal
flobo@ualg.pt

David E. Goldberg
Dept. General Engineering

University of Illinois at Urbana-Champaign
104 South Mathews Avenue

Urbana, IL 61801
deg@uiuc.edu

Abstract
This paper presents an overview of the

parameter-less genetic algorithm and shows
its application to a network expansion prob-
lem. The technique simplifies genetic algo-
rithm operation by incorporating knowledge
of parameter selection and population sizing
theory in the genetic algorithm itself.

1 Introduction

The need for solving complex problems occur in a
variety of domains and genetic algorithms (GAs) can be
useful tools for that purpose. Unfortunately, traditional
GAs require the specification of a number of parameters
for which users usually don’t know how to specify. This
paper presents a technique that eliminates this drawback
by doing a rational and automated parameter selection on
behalf of the user.

In the original work (Harik & Lobo, 1999), the
validity of the parameter-less GA was illustrated on
artificial problems. In this paper it is illustrated on a
quasi-real-world problem, a scenario that users are more
likely to encounter in practice.

The paper starts by reviewing the parameter-less
genetic algorithm. Section 3 describes the application
problem, and section 4 shows the application of the
parameter-less genetic algorithm.

2 Overview of the parameter-less GA

This section briefly reviews the parameter-less GA. With
the parameter-less GA, the user doesn’t need to specify
the selection rate, the crossover probability and the
population size parameters.

2.1 Selection Rate and Crossover Probability

The selection rate s and crossover probability pc are
preset to fixed values (s = 4, pc = 0.5) in order to obey
the schema theorem and ensure building block growth.

At first sight, one could argue that setting s = 4
and pc = 0.5 for all problems constitutes a similar
kind of mistake that other practitioners have done in the

past when adopting the so-called “standard parameter
settings”. However, there is an important difference in
this case. Previous theoretical studies (Goldberg, Deb, &
Thierens, 1993) have shown that there must be a balance
between selection pressure and schema disruption in
order to ensure building block growth. This argument
comes from a simplified view of the schema theorem.
Let φ(H, t) be the effect of the selection operator on
schema H at generation t, and ε(H, t) be the disruption
factor on schema H due to the crossover operator. Then
the overall net growth ratio on schema H at generation t

is given by:

φ(H, t)[1 − ε(H, t)]

The above expression is nothing but a simplification
of the schema theorem. Under the conservative hypothe-
sis that a schema is destroyed during the crossover oper-
ator, and substituting s and pc in the formula above, we
obtain that the growth ratio of a schema is given by the
expression:

s(1 − pc)

Setting s = 4 and pc = 0.5 gives a net growth factor
of 2, and ensures that the necessary building blocks will
grow. Other values of s and pc could also be used as long
as the net growth factor is somewhat greater than 1, and
some care is taken not to fall in the extreme cases of a
very high or very low selection pressure (Goldberg, Deb,
& Thierens, 1993). In other words, setting s and pc to
fixed values is a rational decision which is backed up by
previous theoretical work.

2.2 Population sizing

The population size is a critical parameter in a GA. Too
small and the GA converges to poor solutions. Too large
and the GA spends unnecessary computational resources.
There are theoretical models (Harik, Cantú-Paz, Gold-
berg, & Miller, 1997) that can be used to size populations
but they are not easy to apply in practice because they
rely on parameters that are usually unknown and are also
hard to estimate for real world problems.



Although not trivial to put in practice, the theoretical
models on population sizing are important and crucial for
understanding the role of the population in a GA. Among
other things, an important lesson of those models is that
setting the population size to a fixed value regardless of
the problem’s size and difficulty, is certainly a mistake.

In practice, the bottom line is that the user has to do
some experimentation and guess the population size. But
guessing right is pure luck and most likely the user will
guess wrong by doing one of the following two mistakes:
(1) a population size that is too small, or (2) a population
size that is too large.

The parameter-less GA uses a technique that was
developed on purpose to eliminate the need of guessing
the population size, and therefore, avoid the two type of
errors. The basic idea is to continuously increase the
population size in an attempt to reach the right sizing.
When to stop this growing process of the population is
left to the user. He/she will decide when to stop as soon
as he/she realizes that is not worth to wait more for an
improvement in solution quality.

The way the parameter-less GA simulates a kind of
continuous population size growth is by establishing a
race among multiple populations of various sizes (pow-
ers of 2). The different populations are at different stages
of evolution, the smaller ones being ahead of the larger
ones in terms of generations. For example, a snapshot of
the parameter-less GA at a particular point in time could
reveal the existence of 3 populations whose sizes could
be 256, 512, and 1024. The population of size 256 could
be running its 30th generation, while the population of
size 512 could be on generation 6, and the population of
size 1024 could still be on generation 1.

As time goes by, the smaller populations are elimi-
nated and larger populations are created. The creation
and deletion of populations is controlled by inspecting
the average fitness of the populations and taking rational
decisions based on those readings. For example, if the
population of size 512 has an average fitness greater than
that of the population of size 256, then there is no point
in continuing running the small population anymore be-
cause it is very unlikely that the smaller population will
produce a fitter individual than the larger population. Re-
call that the larger population is at a much earlier stage
of evolution but already contains better individuals than
those contained in the smaller one, a clear indication that
the smaller population is not large enough.

The interested reader should refer elsewhere (Harik
& Lobo, 1999) (Lobo, 2000) for a through description
and implementation details of the parameter-less GA.

2.3 A Note About Mutation

The parameter-less technique ignores the mutation oper-
ator. We recognize that mutation can be important for
many problems but haven’t considered yet how to auto-

mate it within the rest of the parameter-less GA frame-
work. Mutation makes small variations on solutions and
thus is not likely to benefit from very large populations.
On the contrary, crossover requires large population sizes
in order to mix the bits and pieces of the different solu-
tions.

The next section describes an electrical utility net-
work expansion problem, which will be solved subse-
quently by the parameter-less GA.

3 A network expansion problem

Consider the example shown in Figure 1. The figure
shows a region that doesn’t have electrical facilities, an
hypothetical instance of the network expansion problem.

There are four types of entities depicted in the figure:
cables, substations, possible transformer locations, and
houses. These entities are represented in the figure by
lines, squares, triangles, and dots respectively. In the
example there are five substations (squares) connected
by cables in a network. The objective of the problem
is to expand the network so that the houses (dots) can
get electricity. Moreover, the electrical utility company
would like to do so with minimum cost.

The substations are the only entities that take part of
the electrical infrastructure. The transformers (triangles
in the figure) don’t exist yet but there are a number
of possible locations where they can be built. These
locations are given in advance by the electrical utility and
may take into account a variety of restrictions.

The total cost of expanding the network is the sum of
the costs of all the cables and transformers that need to
be built. Each transformer that is built has a fixed cost
associated and the cost of each cable is proportional to
its length.

In summary, one has to decide which transformers
should be built. Once that decision is taken, expanding
the network can be done with a straightforward compu-
tation. Figure 1 through 4 illustrate the fitness function
by showing the construction of the network on a hypo-
thetical 10-transformer network problem. There are 10
possible locations (the 10 triangles in Figure 1) to build
transformers. For each location, a binary decision must
be made by the power company: build or not build a
transformer in that location. In Figure 2, 4 locations are
selected for building transformers and the other 6 are left
out. The example corresponds to solution 0101000110,
which is one out of the 210 possible solutions. Then, a
graph is constructed in the following way. For each se-
lected transformer node, an edge is added from that node
to all the existing substation nodes and to all the other
selected transformers. Following that, a minimum span-
ning tree of the graph is computed (see Figure 3). Once
the tree is constructed, each house can be connected to
the network by adding an edge from the house to the
closest node of the tree. The final result is shown on



Figure 1 A hypothetical 10-bit (10-transformer) net-
work expansion problem instance.

Figure 2 4 transformer nodes are selected to be built.
They are represented on the figure by the large circles.

Figure 4.
It should be stressed that in this paper we are treating

the objective function as a black-box. In other words,
the purpose of the paper is not to show that the GA is
superior or even competitive with specialized algorithms
specifically tuned for this particular problem. Instead,
the purpose of the paper is to illustrate how GA technol-
ogy may be applied in an environment where not much
is known other than the objective function values of in-
dividual solutions.

We have described a method to expand the existing
network once the transformers to be built are specified.
The decision variables of the problem are binary vari-
ables, one for each possible transformer location, indi-
cating whether that transformer should be built or not.
Thus, if the electrical utility company specifies ` possi-
ble locations to build transformers, the total number of
possible network configurations is 2` and the application
of a genetic algorithm is straightforward.

4 Parameter-less GA Application

This section shows the application of the parameter-less
GA to the network expansion problem described during
the previous section. In particular, the GA is applied
to a 60-bit problem instance. It should be stressed

Figure 3 A minimum spanning tree of the graph is
computed.

Figure 4 Each house connects to the closest node of the
minimum spanning tree.

that the parameter-less technique relieves the user from
having to specify the population size, selection rate, and
crossover probability, but it does not relieve the user from
specifying the type of GA operators to be used. In fact,
the parameter-less technique can be used with any kind
of GA.

In a first experiment, we use the parameter-less
technique coupled with a simple GA using uniform
crossover and with mutation turned off. Table 1 shows
a trace of the execution of a single run of the parameter-
less GA. The algorithm starts with a population of size 16
and continuously increases (doubles) its size. For each
population size, Table 1 shows the best solution quality
found. For example, when using a population of size
128, the best solution had a cost of 1990.25.
A number of observations are worth mentioning. First
and foremost, the experiment is very simple (of course,
there are no parameters!). Larger and larger populations
are continuously spawned. By doing that, the parameter-
less technique injects more and more power into the GA
as time goes by.

The parameter-less GA was stopped when the popu-
lation of size 65536 had already converged but the pop-
ulation of size 131072 was still in its early generations
(see Harik and Lobo (1999) and Lobo (2000) for details
of the execution of the algorithm). In this specific exam-



Table 1 The parameter-less GA on a 60-bit problem
instance.

population solution quality with
size parameter-less SGA
16 2131.79
32 2109.33
64 2004.93
128 1990.25
256 1971.50
512 1984.76

1024 1986.49
2048 1967.21

... ...
65536 1967.21

Figure 5 The best solution found by the parameter-less
GA on a 60-bit problem instance.

ple, the user (ourselves) stopped the parameter-less GA
at that point because we didn’t want to wait longer for
a better solution quality. That of course depends on a
problem by problem basis and from user to user. For
instance, another user might have been happy with the
solution quality of 1990.25 and might have stopped the
parameter-less GA by the time that solution was found
(population size 128 in the example).

The best solution was found at population size 2048
(see Fig. 5). Larger populations also found that solution
but couldn’t get any better. If the user knew that before-
hand he/she would have pressed the stop button at pop-
ulation size 2048 and would have saved computational
time. Unfortunately, the user doesn’t know that before-
hand. In fact, the user can’t predict what would happen if
he/she had let the algorithm run for a longer time; it’s un-
known whether the algorithm can reach a better solution
quality or not.

The only thing that we can say is that if the user is
not satisfied with the solution quality that he has gotten
so far then the best option is to put more power into the
GA and that can be done by increasing the population
size; the parameter-less GA does that automatically.

5 Summary and Conclusions

This paper reviewed the parameter-less genetic algorithm
and showed a practical application of it to a utility net-
work expansion problem. The problem has characteris-
tics that contrast with those of pure artificial problems,
and constitutes a more representative scenario of what
users might encounter in practice.

With the parameter-less GA the user does not have to
do trial and error experiments to find adequate parameter
settings for the GA. It is our strong belief that GAs
should be designed with the user in mind. That is the
only way to have more and more people using them. This
paper makes an important effort in that direction and we
hope it can be useful for practitioners seeking to apply
state GA technology to solve real world problems.

Acknowledgements

This work was sponsored by FCT/MCT under grants
POSI/SRI/42065/2001 and POCTI/MGS/37970/2001.

The work was also sponsored in part by the Air
Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grants F49620-00-0163, the
National Science Foundation under grant DMI-9908252.

The views and conclusions contained herein are our
own and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either ex-
pressed or implied, of the Air Force Office of Scien-
tific Research, the National Science Foundation, the U.
S. Army, or the U.S. Government.

References

Goldberg, D. E., Deb, K., & Thierens, D. (1993). To-
ward a better understanding of mixing in genetic
algorithms. Journal of the Society of Instrument
and Control Engineers, 32(1), 10–16.

Harik, G. R., Cantú-Paz, E., Goldberg, D. E., &
Miller, B. L. (1997). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations.
In Bäck, T. (Ed.), Proceedings of 1997 IEEE In-
ternational Conference on Evolutionary Compu-
tation (pp. 7–12). New York: IEEE Press.

Harik, G. R., & Lobo, F. G. (1999). A parameter-
less genetic algorithm. In Banzhaf, W., Daida, J.,
Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,
M., & Smith, R. E. (Eds.), GECCO-99: Proceed-
ings of the Genetic and Evolutionary Computation
Conference (pp. 258–267). San Francisco, CA:
Morgan Kaufmann.

Lobo, F. G. (2000). The parameter-less genetic al-
gorithm: Rational and automated parameter se-
lection for simplified genetic algorithm operation.
Doctoral dissertation, Universidade Nova de Lis-
boa, Lisboa.


