
Computational Optimization and Applications, 21, 5–20, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Survey of Optimization by Building and Using
Probabilistic Models

MARTIN PELIKAN pelikan@illigal.ge.uiuc.edu
DAVID E. GOLDBERG deg@illigal.ge.uiuc.edu
FERNANDO G. LOBO lobo@illigal.ge.uiuc.edu
Illinois Genetic Algorithms Laboratory, Department of General Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA

Received September 22, 1999; Revised March 10, 2000

Abstract. This paper summarizes the research on population-based probabilistic search algorithms based on
modeling promising solutions by estimating their probability distribution and using the constructed model to guide
the exploration of the search space. It settles the algorithms in the field of genetic and evolutionary computation
where they have been originated, and classifies them into a few classes according to the complexity of models
they use. Algorithms within each class are briefly described and their strengths and weaknesses are discussed.

Keywords: genetic and evolutionary computation, genetic algorithms, model building, decomposable problems,
stochastic optimization

1. Introduction

Recently, a number of evolutionary algorithms that guide the exploration of the search space
by building probabilistic models of promising solutions found so far have been proposed.
These algorithms have shown to perform very well on a wide variety of problems. However,
in spite of a few attempts to do so, the field lacks a global overview of what has been done
and where the research in this area is heading to.

The purpose of this paper is to review and describe basic principles of the recently pro-
posed population-based search algorithms that use probabilistic modeling of promising
solutions to guide their search. It settles the algorithms in the context of genetic and evolu-
tionary computation, classifies the algorithms according to the complexity of models they
use, and discusses the advantages and disadvantages of each of these classes.

The next section briefly introduces basic principles of genetic algorithms as our starting
point. The paper continues by sequentially describing the classes of approaches classified
according to complexity of a used class of models from the least to the most general one.
Section 4 describes a few approaches that work with other than string representation of
solutions. Section 5 summarizes and concludes the paper.

2. Genetic algorithms, problem decomposition, and building blocks

Simple genetic algorithms (GAs) [11, 18] are population-based search algorithms that
guide the exploration of the search space by application of selection and genetic operators



6 PELIKAN, GOLDBERG AND LOBO

of recombination/crossover and mutation. They are usually applied to problems where the
solutions are represented or can be mapped onto fixed-length strings over a finite alphabet.

The user defines the problem that the GA will attempt to solve by choosing the length and
base alphabet of strings representing the solutions and defining a function, usually called
fitness function, that discriminates the string solutions according to their quality. For each
string, the fitness function returns a real number quantifying its quality. The higher the
fitness, the better the solution.

GAs start with a randomly generated population of solutions. From the current population
of solutions the better solutions are selected by the selection operator. The selected solutions
are processed by applying recombination and mutation operators. Recombination combines
multiple (usually two) solutions that have been selected together by exchanging some of
their parts. There are various strategies to do this, e.g. one-point and uniform crossover.
Mutation performs a slight perturbation to the resulting solutions. Created solutions replace
some of the old ones and the process is repeated until the termination criteria given by the
user are met.

By selection, the search is biased to the high-quality solutions. New regions of the search
space are explored by combining and mutating repeatedly selected promising solutions.
By mutation, close neighborhood of the original solutions is explored like in a local hill-
climbing. Recombination brings up innovation by combining pieces of multiple promising
solutions together. GAs should therefore work very well for problems that can be somehow
decomposed into subproblems of bounded difficulty by solving and combining the solutions
of which a global solution can be constructed. Over-average solutions of these sub-problems
are often called building blocks in GA literature.

Reproducing the building blocks by applying selection and preserving them from disrup-
tion, in combination with effective mixing, is a very powerful principle to solve decompos-
able problems [15, 28] which can be additively decomposed into terms of bounded order.
An example of such decomposable function is a simple linear function called one-max
which counts bits in the input string. A more complex example is the graph partitioning
where each edge between two vertices from different partitions negatively contributes to
the overall function by a constant penalty. By using the same principle, a much wider class
of problems can be solved [12], including scheduling [19], telecommunication network
optimization [38], and real-valued problems [3].

However, fixed, problem-independent recombination operators often either break the
building blocks frequently or do not mix them effectively. GAs work very well only for
problems where the building blocks are located tightly in strings representing the solutions
[45]. On problems with the building blocks spread all over the solutions, the simple GAs
experience very poor performance [45]. That is why there has been a growing interest
in methods that learn the structure of a problem on the fly and use this information to
ensure a proper mixing and growth of building blocks. One of the approaches is based on
probabilistic modeling of promising solutions to guide the exploration of the search space
instead of using crossover and mutation like in the simple GAs.

Probability distributions were recently used in various recombination schemes to generate
new offspring, such as blend crossover [8], simulated binary crossover [6], fuzzy recom-
bination [46] and UNDX [30]. However, in all these approaches, only two or three-parent



PROBABILISTIC MODELS 7

recombination is proposed. The methods discussed in this paper use macroscopic infor-
mation about promising solutions as the marginal and conditional probabilities over large
samples of high-quality solutions. Once the model of good solutions is constructed, this
model is used to generate new points, regardless of the original population.

3. Evolutionary algorithms based on probabilistic modeling

From an abstract point of view, the selected set of promising solutions can be viewed as a
sample drawn from an unknown probability distribution. Knowing that distribution would
allow the optimization algorithm to generate new solutions that are somehow similar to the
ones contained in the original selected set of solutions.

As pointed out, the true probability distribution is unknown. However, there are algo-
rithms that are able to estimate that probability distribution by using the selected set of
solutions itself and use this estimate to generate new solutions. These algorithms are called
the probabilistic model-building genetic algorithms (PMBGAs), or the estimation of distri-
bution algorithms (EDAs) [29]. In PMBGAs better solutions are selected from an initially
randomly generated population of solutions like in the simple GA. Then, the true probability
distribution of the selected set of solutions is estimated and new solutions are generated
according to this estimate. The new solutions are then added into the original population,
replacing some of the old ones. The process is repeated until the termination criteria are met.

The PMBGAs therefore do the same as the simple GAs except for that they replace
genetic recombination and mutation operators by the following two steps:

1. A model (an estimate of the true distribution) of selected promising solutions is
constructed.

2. New solutions are generated according to the constructed model.

Although PMBGAs process solutions in a different way than the simple GAs, it has been
theoretically and empirically proven that the results of both can be very similar [16, 25].
For instance, the simple GA with uniform crossover which randomly picks a value on
each position from either of the two parents works asymptotically the same as the so-
called univariate marginal distribution algorithm [29] that assumes that the variables are
independent [16, 25, 36]. Both the PMBGAs as well as the GAs are trying to put the same
bias on the search. This bias prefers the solutions that can be obtained by combining partial
solutions of promising solutions found so far. The difference is in a way this is achieved.

A distribution estimate can capture a building-block structure of a problem very accurately
and ensure a very effective mixing and re-production of building blocks. This results in
a linear or sub-quadratic performance of PMBGAs on these problems [26, 31, 33]. In
fact, with an accurate distribution estimate that captures a structure of the solved problem
the PMBGAs unlike the simple GAs perform the same as GA theory with mostly used
assumptions claims. However, estimation of the true distribution is far from a trivial task.
There is a trade-off between the accuracy and efficiency of the estimate.

The following sections describe three classes of PMBGAs that can be applied to problems
with solutions represented by fixed-length strings over a finite alphabet. The algorithms



8 PELIKAN, GOLDBERG AND LOBO

Figure 1. An example Bayesian network.

are classified according to the complexity of models they use. Starting with methods that
assume that the variables in a problem (string positions) are independent, through the
ones that take into account some pairwise interactions, to the methods that can accurately
model even a very complex problem structure with highly overlapping multivariate building
blocks.

An example model from each presented class of models will be shown. Models will
be displayed as Bayesian networks, i.e. directed acyclic graphs with nodes corresponding
to the variables in a problem (string positions) and edges corresponding to probabilistic
relationships covered by the model. An edge between two nodes in a Bayesian network
relates the two nodes so that the value of the variable corresponding to the terminal node of
this edge depends on the value of the variable corresponding to the initial node of this edge.
An example Bayesian network adapted from [44] is shown in figure 1. In this example,
the variable Disease is conditioned on variables Age, Occupation, and Climate. Symptoms
are conditioned on Disease. Other variables are assumed to be independent given their
parents.

3.1. No interactions

The simplest way to estimate the distribution of promising solutions is to assume that the
variables in a problem are independent and to look at the values of each variable regardless
of the remaining solutions (see figure 2). The model of the selected promising solutions used
to generate the new ones contains a set of frequencies of all values on all string positions in
the selected set. These frequencies are used to guide further search by generating new string
solutions position by position according to the frequency values. In this fashion, building
blocks of order one are reproduced and mixed very efficiently. Algorithms based on this
principle work very well on linear problems where the variables are not mutually interacting
[15, 25].

In the population-based incremental learning (PBIL) algorithm [1] the solutions are
represented by binary strings of fixed length. The population of solutions is replaced with
the so-called probability vector which is initially set to assign each value on each position
with the same probability 0.5. After generating a number of solutions the very best solutions
are selected and the probability vector is shifted towards the selected solutions. The PBIL



PROBABILISTIC MODELS 9

Figure 2. Graphical model with no interactions covered.

has been also referred to as the hill-climbing with learning (HCwL) [22] and the incremental
univariate marginal distribution algorithm (IUMDA) [25] recently. A qualitative analysis
of the PBIL was made by Kvasnicka et al. [22].

In the univariate marginal distribution algorithm (UMDA) [29] the population of solutions
is processed. In each iteration the frequencies of values on each position in the selected set of
promising solutions are computed and these are then used to generate new solutions which
replace the old ones. The new solutions replace the old ones and the process is repeated
until the termination criteria are met.

The compact genetic algorithm (cGA) [16] replaces the population with a single proba-
bility vector like the PBIL. However, unlike the PBIL, it modifies the probability vector so
that there is direct correspondence between the population that is represented by the prob-
ability vector and the probability vector itself. Instead of shifting the vector components
proportionally to the distance from either 0 or 1, each component of the vector is updated by
shifting its value by the contribution of a single individual to the total frequency assuming
a particular population size. By using this update rule, theory of simple genetic algorithms
can be directly used in order to estimate the parameters and behavior of the cGA.

All algorithms described in this section perform similarly. They work very well for linear
problems where they achieve linear or sub-quadratic performance, depending on the type
of a problem, and they fail on problems with strong interactions among variables. For more
information on the described algorithm as well as theoretical and empirical results, please
see the cited papers.

Algorithms that do not take into account any interdependencies of various bits (variables)
fail on problems where there are strong interactions among variables and where without
taking into account these the algorithms are mislead. That is why a lot of effort has been
put in extending methods that use a simple model that does not cover any interactions to
methods that could solve a more general class of problems as efficiently as the simple PBIL,
UMDA, or cGA can solve linear problems.



10 PELIKAN, GOLDBERG AND LOBO

3.2. Pairwise interactions

The first algorithms that did not assume that the variables in a problem were indepen-
dent could cover some pairwise interactions. An example of such algorithm is the mutual-
information-maximizing input clustering (MIMIC) algorithm [5] which uses a simple chain
distribution (see figure 3(a)) that maximizes the so-called mutual information of neighboring
variables (string positions). In this fashion the Kullback-Liebler divergence [21] between
the chain and the complete joint distribution is minimized. However, to construct a chain
(which is equivalent to ordering the variables), MIMIC uses only a greedy search algorithm
due to its efficiency, and therefore global optimality of the distribution is not guaranteed.

Baluja and Davies [2] use dependency trees (see figure 3(b)) to model promising solutions.
Similarly as in the PBIL, the population is replaced by a probability vector which contains
all pairwise probabilities. The probabilities are initialized to 0.25 and repeatedly adjusted
according to new promising solutions acquired on the fly. There are two major advantages of
using trees instead of chains. Trees are more general than chains because each chain is a tree.
Moreover, by relaxing constraints of the model, in order to find the best model (according
to a measure decomposable into terms of order two), a polynomial maximal branching
algorithm [7] that guarantees global optimality of the solution can be used. On the other
hand, MIMIC uses only a greedy search because in order to learn chain distributions, an
NP-complete algorithm is needed.

In the bivariate marginal distribution algorithm (BMDA) [36] a forest (a set of mutually
independent dependency trees, see figure 3(c) is used. This class of models is even more
general than the class of dependency trees because a single tree is in fact a set of one tree.
As a measure used to determine which variables should be connected and which should
not, Pearson’s chi-square test [23] is used. This measure is also used to discriminate the
remaining dependencies in order to construct the final model.

Pairwise models allow covering some interactions in a problem and are very easy to learn.
The algorithms presented in this section reproduce and mix building blocks of order two
very efficiently, and therefore they work very well on linear and quadratic problems [2, 4,
5, 25, 36]. The latter two approaches can also solve 2D spin-glass problems very efficiently
[36]. Covering only some pairwise interactions has still shown to be insufficient to solve
problems with multivariate or highly-overlapping building blocks [4, 36]. That is why the
research in this area continued with more complex models.

3.3. Multivariate interactions

Using general models has brought powerful algorithms that are capable of solving many
hard problems quickly, accurately, and reliably. However, it has also resulted in a necessity
of using complex learning algorithms that require significant computational time and still do
not guarantee global optimality of the resulting models. Nonetheless, in spite of increased
computational time needed to learn the models, the number of evaluations of the optimized
function is reduced significantly [33, 35, 38, 41]. That is why the overall time complexity
is significantly reduced for large problems. Moreover, on many problems other algorithms
simply do not work. Without learning the structure of a problem, algorithms must be either



PROBABILISTIC MODELS 11

Figure 3. Graphical models with pairwise interactions covered.



12 PELIKAN, GOLDBERG AND LOBO

given this information by an expert or they will simply be incapable of biasing the search
in order to solve complex problems with a reasonable computational cost.

Algorithms presented in this section use models that can cover multivariate interactions.
In the extended compact genetic algorithm (ECGA) [14], the variables are divided into a
number of intact clusters which are manipulated as independent variables in the UMDA
(see figure 4(a). Therefore, each cluster (building block) is taken as a whole and different
clusters are considered to be mutually independent. To discriminate models, the ECGA uses

Figure 4. Graphical models with multivariate interactions covered.



PROBABILISTIC MODELS 13

a minimum description length (MDL) metric [24] which prefers models that allow higher
compression of data (selected set of promising solutions). The advantage of using the MDL
metric is that it penalizes complex models when they are not needed and therefore the
resulting models are not overly complex. To find a good model, a simple greedy algorithm
is used. Starting with all variables separated, in each iteration current groups of variables
are merged so that the metric increases the most. If no more improvement is possible, the
current model is used.

Following from theory of the UMDA, for problems that are separable, i.e. decomposable
into non-overlapping subproblems of a bounded order, the ECGA with a good model should
perform in a sub-quadratic time. A question is whether the ECGA finds a good model and
how much effort it takes. Moreover, many problems contain highly overlapping building
blocks (e.g., 2D spin-glass systems) which can not be accurately modeled by simply dividing
the variables into distinct classes. This results in a poor performance of the ECGA on these
problems.

The factorized distribution algorithm (FDA) [28] uses a factorized distribution as a fixed
model throughout the whole computation. The FDA is not capable of learning the structure
of a problem on the fly. The distribution and its factorization are given by an expert. Dis-
tributions are allowed to contain marginal and conditional probabilities which are updated
according to the currently selected set of solutions. It has been theoretically proven that
when the model is correct, the FDA solves decomposable problems quickly, reliably, and
accurately [28]. However, the FDA requires prior information about the problem in form
of its decomposition and its factorization. Unfortunately, this is usually not available when
solving real-world problems, and therefore the use of FDA is limited to problems where we
can at least accurately approximate the structure of a problem.

The Bayesian optimization algorithm (BOA) [31] uses a more general class of dis-
tributions than the ECGA. It incorporates methods for learning Bayesian networks (see
figure 4(b)) and uses these to model the promising solutions and generate the new ones.
In the BOA, after selecting promising solutions, a Bayesian network that models these is
constructed. The constructed network is then used to generate new solutions. As a measure
of quality of networks, any metric can be used, e.g. Bayesian-Dirichlet (BD) metric [17],
MDL metric, etc. In recently published experiments the BD scoring metric has been used.
The BD metric does not prefer simpler models to the more complex ones. It uses accuracy of
the encoded distribution as the only criterion. That is why the space of possible models has
been reduced by specifying a maximal order of interactions in a problem that are to be taken
into account. To construct the network with respect to a given metric, any algorithm that
searches over the domain of possible Bayesian networks can be used. In recent experiments,
a greedy algorithm has been used due to its efficiency.

The BOA is the first attempt to use general probabilistic models in optimization. It uses
an equivalent class of models as the FDA; however, it does not require any information
about the problem on input. It is able to discover this information itself. Nevertheless,
prior information can be incorporated and the ratio of prior information and information
contained in the set of high-quality solutions found so far can be controlled by the user. Not
only does the BOA fill the gap between the FDA and uninformed search methods but also
offers a method that is efficient even without any prior information [31, 32, 41] and still



14 PELIKAN, GOLDBERG AND LOBO

does not prohibit further improvement by using this. Population sizing and convergence
theory of the BOA was recently developed by [33]. An extension of the BOA to solve a
very interesting class of hierarchically decomposable problems was proposed by [34].

Similar algorithms that use Bayesian networks to model promising solutions were later
proposed by [9], who called the algorithm the estimation of Bayesian network algorithm
(EBNA), and Mühlenbein and Mahnig [27], who called the algorithm the learning factorized
distribution algorithm (LFDA). Both the EDNA as well as the LFDA proceed like the BOA,
but they use an alternative to the metric used in the experiments presented by [31] to
discriminate networks. This metric was previously used in the ECGA [14].

The algorithms that use models capable of covering multivariate interactions achieve a
very good performance on a wide range of problems, e.g. 2D spin-glass systems [26, 31],
graph partitioning [41], telecommunication network optimization [38], multidimensional
real-valued problems [3], etc. However, even problems which are decomposable into terms
of bounded order can still be very difficult to solve. Overlapping the subproblems can
mislead the algorithm until the right solution to a particular subproblem is found and
sequentially distributed across the solutions (e.g., see F0−peak in [26]). Without generating
the initial population with the use of problem-specific information, building blocks of
size proportional to size of a problem have to be used which results in an exponential
performance of the algorithms. This brings up a question on what are the problems we aim
to solve by algorithms based on reproduction and mixing of building blocks that we have
shortly discussed earlier in Section 2. We do not attempt to solve all problems that can
be decomposed into terms of a bounded order, neither only these problems. The problems
we approach to solve are decomposable in a sense that they can be solved by approaching
the problem on a level of solutions of lower order by combining the best of which we
can construct the optimal or a close-to-optimal solution. This is how we bias the search
so that the total space explored by the algorithm substantially reduces by a couple orders
of magnitude and computationally hard problems can be solved quickly, accurately, and
reliably.

4. Beyond string representation of solutions

All algorithms described above work on problems defined on fixed-length strings over a
finite alphabet. However, recently there have been a few attempts to go beyond this simple
representation and directly tackle problems where the solutions are represented by vectors of
real number or computer programs without mapping the solutions on strings. Most of these
approaches use simple models that do not cover any interactions in a problem. However,
there have been attempts to tackle more complex problems by using mixture models and
continuous joint probabilistic models recently. Similar approaches are used in self-adaptive
evolution strategies (ES) [37]. However, in evolution strategies the model of selected parents
is not constructed and the individual solutions are not replaced by the constructed model.
The selected parents are perturbed individually.

In the stochastic hill-climbing with learning by vectors of normal distributions
(SHCLVND) [39] the solutions are represented by real-valued vectors. The population
of solutions is replaced (and modeled) by a vector of mean values of Gaussian normal



PROBABILISTIC MODELS 15

Figure 5. Probabilistic models of real vectors of independent variables. (a) SHCLVND (b) (Servet et al., 1998).

distribution µi for each optimized variable (see figure 5(a)). No interactions among the
variables are covered. The standard deviation σ is stored globally and it is the same for
all variables. After generating a number of new solutions, the mean values µi are shifted
towards the best of the generated solutions and the standard deviation σ is reduced to make
future exploration of the search space narrower. Various ways of modifying the σ parameter
have been exploited in [42].

In another implementation of a real-coded PBIL [43], for each variable an interval (ai , bi )
and a number zi are stored (see figure 5(b)). The zi stands for a probability of a solution to be
in the right half of the interval. It is initialized to 0.5. Each time new solutions are generated
using the corresponding intervals, the best solutions are selected and the numbers zi are



16 PELIKAN, GOLDBERG AND LOBO

F
ig

ur
e

6.
G

ra
ph

ic
al

m
od

el
of

a
pr

og
ra

m
w

ith
no

in
te

ra
ct

io
ns

co
ve

re
d

us
ed

in
PI

PE
.



PROBABILISTIC MODELS 17

shifted towards them. When zi for a variable gets close to either 0 or 1, the interval is reduced
to the corresponding half of it. In figure 5(b), each zi is mapped to the corresponding interval
(ai , bi ). The used model also does not cover any interactions among the variables.

In [10], the PBIL is extended by using a finite adaptive Gaussian mixture model density
estimator. This allows the algorithm to deal with multimodal distributions and explore
different basins of attraction simultaneously.

Within the IDEA framework, Bosman [3] proposed the algorithm that uses the joint
normal and the joint normal kernels distribution to model promising solutions represented
by vectors of real numbers. These distributions are able to capture interactions of continuous
variables. By generating new solutions according to this model, very good performance
on a number of benchmark problems was achieved. The algorithm was compared with
(10 + 50)-evolution strategies and other methods that use both binary as well as real-coded
representations and it was shown to outperform other algorithms on all tested problems.

In the probabilistic incremental program evolution (PIPE) algorithm [40] computer pro-
grams or mathematical functions are evolved like in the genetic programming [20]. However,
pair-wise crossover and mutation are replaced by probabilistic modeling of promising pro-
grams. Programs are represented by trees where each internal node represents a function or
an instruction and leaves represent either input variable or a constant. In the PIPE algorithm,
probabilistic representation of the program trees is used. Probabilities of each instruction in
each node in a maximal possible tree are used to model promising programs and generate
new ones (see figure 6). Unused portions of the tree are simply cut before the evaluation of
the program by a fitness function. Initially, the model is set so that the trees are generated
at random. From the current population of programs the ones that perform the best are
selected. These are then used to update the probabilistic model. The process is repeated
until the termination criteria are met.

Handley [13] used directed acyclic graphs to represent the population of programs (trees)
in genetic programming. However, the method did not attempt to modify the recombination,
but only to reduce the space to store the population and time to evaluate this population.

5. Summary and conclusions

Recently, the use of probabilistic modeling in genetic and evolutionary computation has
become very popular. By combining various achievements of machine learning and genetic
and evolutionary computation, efficient algorithms for solving a broad class of problems
have been constructed. The most recent algorithms are continuously proving their wide-
range applicability and efficiency, and offer a promising approach to solving the problems
that can be resolved by combining high-quality pieces of information of a bounded order
together.

To solve simple problems, algorithms that use a simple fixed or adaptive distribution
estimate like the UMDA and BMDA can be used. To solve complex problems with strongly
interacting decision variables, more sophisticated class of models must be considered and
the BOA or ECGA should be used. In case of real-valued problems, the solution space
can be either adequately discretized or the algorithms that evolve models of continuous
solutions can be used.



18 PELIKAN, GOLDBERG AND LOBO

In this paper, we have reviewed the algorithms that use probabilistic models of promising
solutions found so far to guide further exploration of the search space. The algorithms
have been classified in a few classes according to the complexity of models they use. Basic
properties of each of these classes of algorithms have been shortly discussed and a thorough
list of published papers and other references has been given.

Acknowledgments

The authors would like to thank Erick Cantú-Paz, Martin Butz, Dimitri Knjazew, and Jiri
Pospichal for valuable discussions and useful comments that helped to shape the paper.

The work was sponsored by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant number F49620-97-1-0050. Research funding for this project
was also provided by a grant from the U.S. Army Research Laboratory under the Federated
Laboratory Program, Cooperative Agreement DAAL01-96-2-0003. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies
and endorsements, either expressed or implied, of the Air Force of Scientific Research or
the U.S. Government.

References

1. S. Baluja, “Population-based incremental learning: A method for integrating genetic search based func-
tion optimization and competitive learning,” Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University,
Pittsburgh, PA, 1994.

2. S. Baluja and S. Davies, “Using optimal dependency-trees for combinatorial optimization: Learning the
structure of the search space,” in Proceedings of the 14th International Conference on Machine Learning,
1997, pp. 30–38.

3. P.A. Bosman, “Continuous iterated density estimation evolutionary algorithms within the IDEA framework,”
Personal communication, 2000.

4. P.A.N. Bosman and D. Thierens, “Linkage information processing in distribution estimation algorithms,” in
Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Orlando, FL, W. Banzhaf,
J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith (Eds.), 1999, vol. I, pp. 60–67.

5. J.S. De Bonet, C.L. Isbell, and P. Viola, “MIMIC: Finding optima by estimating probability densities,” in
Advances in Neural Information Processing Systems, M.C. Mozer, M.I. Jordan, and T. Petsche (Eds.), 1997,
vol. 9, p. 424.

6. K. Deb and R.B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems,
vol. 9, pp. 115–148, 1995.

7. J. Edmonds, “Optimum branching,” J. Res. NBS, vol. 71B, pp. 233–240, 1967.
8. L.J. Eshelman and J.D. Schaffer, “Real-coded genetic algorithms and interval-schemata,” in Foundations of

Genetic Algorithms Workshop (FOGA-92), D. Whitley (Ed.), Vail; Colorado, 1992.
9. R. Etxeberria and P. Larrañaga, “Global optimization using Bayesian networks,” in Second Symposium on

Artificial Intelligence (CIMAF-99), Habana, Cuba, 1999, pp. 332–339.
10. M. Gallagher, M. Frean, and T. Downs, “Real-valued evolutionary optimization using a flexible probability

density estimator,” in Proceedings of the Genetic and Evolutionary Computation Conference, W. Banzhaf,
J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith (Eds.), Orlando, Florida, USA,
1999, vol. 1, pp. 840–846.

11. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley:
Reading, MA, 1989.



PROBABILISTIC MODELS 19

12. D.E. Goldberg, “Genetic and evolutionary algorithms in the real world,” University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IlliGAL Report No. 99013, 1999.

13. S. Handley, “On the use of a directed acyclic graph to represent a population of computer programs,” in
Proceedings of the First IEEE Conference on Evolutionary Computation, Piscataway, NJ, 1994, pp. 154–159.

14. G. Harik, “Linkage learning via probabilistic modeling in the ECGA,” University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 99010, 1999.

15. G. Harik, E. Cantú-Paz, D.E. Goldberg, and B.L. Miller, “The gambler’s ruin problem, genetic algorithms,
and the sizing of populations,” in Proceedings of the International Conference on Evolutionary Computation
(ICEC’97), Piscataway, NJ, 1997, pp. 7–12.

16. G.R. Harik, F.G. Lobo, and D.E. Goldberg, “The compact genetic algorithm,” in Proceedings of the Interna-
tional Conference on Evolutionary Computation (ICEC’98), Piscataway, NJ, 1998, pp. 523–528.

17. D. Heckerman, D. Geiger, and M. Chickering, “Learning Bayesian networks: The combination of knowledge
and statistical data,” Microsoft Research, Redmond, WA, Technical Report MSR-TR-94-09, 1994.

18. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press: Ann Arbor, MI,
1975.

19. D. Knjazew and D.E. Goldberg, “OMEGA—Ordering messy GA: Solving permutation problems with the
fast messy genetic algorithm and random keys,” University of Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 2000004, 2000.

20. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, The
MIT Press: Cambridge, MA, 1992.

21. S. Kullback and R.A. Leibler, “On information and sufficiency,” Annals of Math. Stats., vol. 22, pp. 79–86,
1951.

22. V. Kvasnicka, M. Pelikan, and J. Pospichal, “Hill climbing with learning (an abstraction of genetic algorithm),”
Neural Network World, vol. 6, pp. 773–796, 1996.

23. L.A. Marascuilo and M. McSweeney, Nonparametric and Distribution-Free Methods for the Social Sciences,
Brooks/Cole Publishing Company: CA, 1977.

24. T.M. Mitchell, Machine Learning, McGraw-Hill: New York, 1997.
25. H. Mühlenbein, “The equation for response to selection and its use for prediction,” Evolutionary Computation,

vol. 5, no. 3, pp. 303–346, 1997.
26. H. Mühlenbein and T. Mahnig, “Convergence theory and applications of the factorized distribution algorithm,”

Journal of Computing and Information Technology, vol. 7, no. 1, pp. 19–32, 1998.
27. H. Mühlenbein and T. Mahnig “FDA—A scalable evolutionary algorithm for the optimization of additively

decomposed functions,” Evolutionary Computation, vol. 7, no. 4, pp. 353–376, 1999.
28. H. Mühlenbein, T. Mahnig, and A.O. Rodriguez, “Schemata, distributions and graphical models in evolutionary

optimization,” Journal of Heuristics, vol. 5, pp. 215–247, 1999.
29. H. Mühlenbein and G. Paaß, “From recombination of genes to the estimation of distributions I. Binary

parameters,” in Parallel Problem Solving from Nature—PPSN IV, Berlin, A. Eiben, T. Bäck, M. Shoenauer,
and H. Schwefel (Eds.), 1996, pp. 178–187.

30. I. Ono and S. Kobayashi, “A real-coded genetic algorithm for function optimization using unimodal normal
distribution crossovers,” in Proceedings of the Seventh International Conference on Genetic Algorithms, San
Francisco, T. Bäck (Ed.), 1997, pp. 246–253.

31. M. Pelikan, D.E. Goldberg, and E. Cantú-Paz, “Linkage problem, distribution estimation, and Bayesian
networks,” University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL,
IlliGAL Report No. 98013, 1998.

32. M. Pelikan, D.E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian optimization algorithms,” in Proceedings
of the Genetic and Evolutionary Computation Conference GECCO-99, Orlando, FL, W. Banzhaf, J. Daida,
A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith (Eds.), 1999, vol. I, pp. 525–532.

33. M. Pelikan, D.E. Goldberg, and E.Cantú-Paz, “Bayesian optimization algorithm, population sizing, and time
to convergence,” University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana,
IL, IlliGAL Report No. 2000001, 2000.

34. M. Pelikan, D.E. Goldberg, and E. Cantú-Paz, “Hierarchical problem solving by the Bayesian optimization
algorithms,” University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana,
IL, IlliGAL Report No. 2000002, 2000.



20 PELIKAN, GOLDBERG AND LOBO

35. M. Pelikan, D.E. Goldberg, and E.Cantú-Paz, “Linkage problem, distribution estimation, and Bayesian
networks,” Evolutionary Computation, vol. 8, no. 3, pp. 311–341, 2000.

36. M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution algorithm,” in Advances in Soft
Computing—Engineering Design and Manufacturing, London, R. Roy, T. Furuhashi, and P.K. Chawdhry
(Eds.), 1999, pp. 521–535.

37. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog: Stuttgart, 1973.

38. F. Rothlauf, D.E. Goldberg, and A. Heinzl, “Bad codings and the utility of well-designed genetic algorithms,”
University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL
Report No. 200007, 2000.

39. S. Rudlof and M. Köppen, “Stochastic hill climbing with learning by vectors of normal distributions,” in First
On-line Workshop on Soft Computing, Nagoya, Japan, 1996.

40. R.P. Salustowicz and J. Schmidhuber, “Probabilistic incremental program evolution: Stochastic search through
program space,” in Machine Learning: ECML-97, M. van Someren and G. Widmer (Eds.), vol. 1224 of Lecture
Notes in Artificial Intelligence, 1997, pp. 213–220.

41. J. Schwarz and J. Ocenasek, “Experimental study: Hypergraph partitioning based on the simple and advanced
algorithms BMDA and BOA,” in Proceedings of the Fifth International Conference on Soft Computing, Brno,
Czech Republic, 1999, pp. 124–130.

42. M. Sebag and A. Ducoulombier, “Extending population-based incremental learning to continuous search
spaces,” in Parallel Problem Solving from Nature—PPSN V, Berlin Heidelberg, 1998, pp. 418–427.

43. I. Servet, L. Trave-Massuyes, and D. Stern, “Telephone network traffic overloading diagnosis and evolutionary
computation techniques,” in Proceedings of the Third European Conference on Artificial Evolution (AE’97),
NY, G. Goos, J. Hartmanis, and J. Leeuwen (Eds.), 1997, pp. 137–144.

44. R. Shachter and D. Heckerman, “Thinking backwards for knowledge acquisition,” AI Magazine, vol. 7,
pp. 55–61, 1987.

45. D. Thierens, “Analysis and design of genetic algorithm,” Ph.D. thesis, Katholieke Universiteit Leuven, Leuven,
Belgium, 1995.

46. H.-M. Voigt, H. Mühlenbein, and D. Cvetković, “Fuzzy recombination for the breeder genetic algorithm,” in
Proceedings of the Sixth International Conference on Genetic Algorithms, 1995, pp. 104–111.


